Search
Duplicate

바이든vs날리면

원본코드를 colab에서 실행한 관계로 vscode나 로컬 쥬피터환경에서 실행할 경우 코드일부와 파일경로 변경이 필요하니 참고용으로만 봐야합니다.
목차

[깃허브 레포지토리]

Bidenvsblowing
roughkyo

[참고]

1.데이터셋과 프로젝트의 목적

1.
데이터셋
본인이 직접 "날리면"과 "바이든", "알 수 없는" 음성 데이터를 각각20개씩 녹음
총 60개의 데이터
음성 녹음의 정교성을 올리기 위해 골드웨이브 사용
샘플링 비율 8000, 스테레오 채널 설정
실제 테스트 데이터는 "굥 각하의 음성 중 ‘바이든은’ or 자칭 ‘날리면’ 부분을 컷팅한 오디오 파일"
2.
추가 데이터
TTS기능을 사용하여 만든 음성데이터 12개
추가 데이터 확보를 위해 "데이터 증강(Augmentation) 사용"하여 또 (60+12)*5개 =360개 확보
3.
전체 데이터
갯수: 432개(72 + 360개)
본인 녹음: 60개(클래스당 20개)
TTS기능 활용: 12개(클래스당 4개)
데이터 증강(5가지 기법): 72*5 = 288개(클래스당 144개)
4.골드웨이브 작업 모습

2.이론적 배경

1.
CNN이용
CNN은 데이터에서 패턴을 추출하는데 유용한 알고리즘으로 주로 이미지 분야에 특화되어 있음
이미지가 벡터라는 점을 감안한다면 오디오 샘플 또한 CNN 알고리즘을 적용할수 있음
1.
오디오 데이터 전처리
CNN을 사용하기 위해서는 stft나 melspectrogram 피쳐맵 데이터 생성을 위한 전처리 과정이 필요함
1.
오디오 전처리도 귀찮다면?
1차원 CNN을 적용해볼 수 있음
1.
음성 데이터 증강(Augmentation)은 어떻게?
화이트 노이즈 추가
shiftinf 추가
Stretching 추가
피치 변경(음의 높이 또는 높낮이)

3.데이터 셋 확인

일단 시각화 먼저
총 3개의 시각화
1.
원본 음성파일 시각화
2.
STFT결과 시각화
3.
멜스펙트럼 결과 시각화
In [ ]:
#라이브러리 import import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import glob #glob는 파일들의 리스트를 뽑을 때 사용하는 라이브러리 import pickle #데이터를 저장하고 불러올때 매우 유용한 라이브러리 import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Conv2D, MaxPool2D, Input, Dense, Flatten,Dropout, GlobalAvgPool2D from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from IPython.display import Audio, display import librosa.display, librosa
In [ ]:
#1개의 오디오 파일만 시각화 # 실제 test해볼 파일을 지정해서 들어보기 file_path = '/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/train/biden/biden1.wav' y, sr = librosa.load(file_path) #일단 들어보기 display(Audio(data=y,rate=sr))
Your browser does not support the audio element.

주의-음성데이터 최대길이 확인

음성 데이터의 길이가 제각각인 경우
음성 데이터 길이가 제일 긴 것을 기준으로 짧은 부분은 padding처리 해야 함
In [ ]:
# 데이터 타입과 shape을 잘 기억하기 # 제일 긴 음성데이터의 길이를 max_len변수에 저장 max_len = len(y) max_len
Out[ ]:
33075
In [ ]:
#데이터 살펴보기 print(sr, y.shape) print(y) #숫자는 아래 해석 참고
22050 (33075,) [-1.8256820e-04 -1.4008603e-04 4.7545291e-05 ... -1.0961011e-02 -7.8880982e-03 -3.9390200e-03]

음성 데이터 해석

sr값은 22050: 1초에 22050개의 샘플이 기록되어있고(22050Hz)
음성길이가 약 1.x초 이므로
총 33148개의 샘플이 들어있는 것임

3.1.음성데이터 시각화(FFT전)

In [ ]:
# 푸리에 변환전 x축은 타임, y축은 진폭의 형태라고 생각하자! plt.figure(figsize = (12, 3)) plt.plot(y, lw = 1) #lw는 line width옵션을 의미 plt.xlabel("time") plt.ylabel("data") plt.xlim(0, len(y)) plt.show()

3.2.학습에 사용될 음성데이터 확인

train 데이터
총 3개의 class 존재함
1.주의점 학습에 사용될 음성데이터의 길이가 모두 동일해야하니 전처리 필요
In [ ]:
#glob 라이브러리 사용 import glob short = str('/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/train/') unknown_dir = glob.glob(short + "/unknown/*") biden_dir = glob.glob(short +"/biden/*") nali_dir = glob.glob(short +"/nali/*") print("unknown_dir의 파일갯수:", len(unknown_dir)) print("biden_dir 파일갯수:", len(biden_dir)) print("nali_dir 파일갯수:", len(nali_dir))
unknown_dir의 파일갯수: 24 biden_dir 파일갯수: 24 nali_dir 파일갯수: 24
In [ ]:
##각각의 file_path를 리스트로 unknown_file_path = [] for i in range(len(unknown_dir)): unknown_file_path.append(unknown_dir[i]) biden_file_path = [] for i in range(len(biden_dir)): biden_file_path.append(biden_dir[i]) nali_file_path = [] for i in range(len(nali_dir)): nali_file_path.append(nali_dir[i]) #잘되었는지 1개의 nali_file_path 출력 print(len(nali_file_path))
24
In [ ]:
#하나만 출력해보기 unknown_file_path[23]
Out[ ]:
'/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/train/unknown/clova_unknown (3).wav'
In [ ]:
#해당 파일을 librosa.load로 모두 불러와서 배열로 저장 #각각 3개의 클래스에 해당되는 데이터를 담을 배열 선언 unknown_array = [] #여기서 33075의 의미는 음성파일의 최대 길이 for i in range(len(unknown_file_path)): y, sr = librosa.load(unknown_file_path[i]) if y.shape != max_len: zero_padding = tf.zeros(max_len- tf.shape(y), dtype=tf.float32) # zero_padding y = tf.concat([y, zero_padding],0) unknown_array.append(y) unknown_array = np.array(unknown_array) biden_array = [] #여기서 33075의 의미는 음성파일의 최대 길이 for i in range(len(biden_file_path)): y, sr = librosa.load(biden_file_path[i]) if y.shape != max_len: zero_padding = tf.zeros(max_len- tf.shape(y), dtype=tf.float32) # zero_padding y = tf.concat([y, zero_padding],0) biden_array.append(y) biden_array = np.array(biden_array) nali_array = [] #여기서 33075의 의미는 음성파일의 최대 길이 for i in range(len(nali_file_path)): y, sr = librosa.load(nali_file_path[i]) if y.shape != max_len: zero_padding = tf.zeros(max_len- tf.shape(y), dtype=tf.float32) # zero_padding y = tf.concat([y, zero_padding],0) nali_array.append(y) nali_array = np.array(nali_array)
In [ ]:
# 넘파이 배열로 잘 저장되었는지 확인 # np.random.randint(6) # 0 or 1 or ~ or 0부터 5까지 랜덤한 숫자 1개 random_i = np.random.randint(len(nali_file_path)) display(Audio(data=nali_array[random_i],rate=sr))
Your browser does not support the audio element.
In [ ]:
#각각의 배열에 저장된 값 확인 print("배열shape:", nali_array.shape)
배열shape: (24, 33075)

3.3.학습데이터 시각화

In [ ]:
#시각화를 위해 배열 차원 변경 nali_array_visual = nali_array.reshape(8,3, -1) biden_array_visual = biden_array.reshape(8,3, -1) unknown_array_visual = unknown_array.reshape(8,3, -1)
In [ ]:
#날리면 음성 데이터 시각화 #데이터가 많으니 앞 15개만 시각화 fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(20, 10)) for i in range(5): for j in range(3): axes[i][j].plot(nali_array_visual[i][j], lw = 2) #lw는 line width옵션을 의미 # axes[i][j].set_title("sound_wave") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') fig.tight_layout(pad=2) fig.suptitle("This is nali_sounde_wave", fontsize=16) plt.show()
In [ ]:
#바이든 음성 데이터 시각화 #데이터가 많으니 앞 10개만 시각화 fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(20, 10)) for i in range(5): for j in range(3): axes[i][j].plot(biden_array_visual[i][j], color='red',lw = 2) #lw는 line width옵션을 의미 # axes[i][j].set_title("sound_wave") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') fig.tight_layout(pad=2) fig.suptitle("This is biden_sounde_wave", fontsize=16, y = -0.01) plt.show()
In [ ]:
#unknown 음성 데이터 시각화 #데이터가 많으니 앞 10개만 시각화 fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(20, 10)) for i in range(5): for j in range(3): axes[i][j].plot(unknown_array_visual[i][j], color='orange',lw = 2) #lw는 line width옵션을 의미 # axes[i][j].set_title("sound_wave") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') fig.tight_layout(pad=2) fig.suptitle("This is biden_sounde_wave", fontsize=16, y = -0.01) plt.show()
In [ ]:
#3개 클래스에서 하나씩 뽑아서 시각화 비교 fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(20, 10)) for i in range(5): for j in range(3): if j==0: axes[i][j].plot(unknown_array_visual[i][j], color='orange',lw = 2) #lw는 line width옵션을 의미 axes[i][j].set_title("unknowm") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') elif j==1: axes[i][j].plot(biden_array_visual[i][j], color='red',lw = 2) #lw는 line width옵션을 의미 axes[i][j].set_title("biden") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') elif j==2: axes[i][j].plot(nali_array_visual[i][j], color='blue',lw = 2) #lw는 line width옵션을 의미 axes[i][j].set_title("nali") axes[i][j].set_xlabel('time') axes[i][j].set_ylabel('amp') fig.tight_layout(pad=2) fig.suptitle("This is 3case_sounde_wave", fontsize=16, y = -0.01) plt.show()

3.4.스펙트럼 분석

시간에 따른 진폭파형으로는 분석이 불가능
STFT(Short-Time Fourier Transform)을 실시
STFT의 값은 너무 미세해서 차이를 파악하고 관찰하기 쉽지 않음
따라서 데시벨로 변환한 다음 시각화하는 것이 일반적
In [ ]:
# window는 STFT에 사용할 윈도우의 종류 # n_fft는 윈도우의 길이, 그리고 hop length는 얼마나 겹칠 것인지를 설정 nali_sample = librosa.stft(nali_array[1], n_fft=2048, window='hann', hop_length=512) nali_sample.shape
Out[ ]:
(1025, 65)
In [ ]:
nali_array[1].shape
Out[ ]:
(33075,)
In [ ]:
# 데시벨 값으로 변환하지 않으면 #스펙트럼 변환 후 시각화(librosa라이브러리 활용) nali_spec = librosa.amplitude_to_db(np.abs(nali_sample), ref=np.max) librosa.display.specshow(nali_spec, x_axis='time', y_axis='log') plt.colorbar(format='%+2.0f dB') plt.show()
In [ ]:
#이제 전체 데이터를 STFT한 다음 시각화 해보기 #STFT값과 데시벨로 변환한 spec값을 각각 저장 nali_stft = [] #SFT값을 저장할 리스트 nali_spec = [] #SFT값을 데시벨로 바꾸어 저장할 리스트 for i in range(len(nali_array)): temp1 = librosa.stft(nali_array[i], n_fft=2048, window='hann', hop_length=512) nali_stft.append(temp1) nali_spec.append(librosa.amplitude_to_db(np.abs(temp1), ref=np.max)) #리스트를 넘파이 배열로 nali_stft = np.array(nali_stft) nali_spec = np.array(nali_spec) biden_stft = [] biden_spec = [] for i in range(len(biden_array)): temp2 = librosa.stft(biden_array[i], n_fft=2048, window='hann', hop_length=512) biden_stft.append(temp2) biden_spec.append(librosa.amplitude_to_db(np.abs(temp2), ref=np.max)) #리스트를 넘파이 배열로 biden_stft = np.array(biden_stft) biden_spec = np.array(biden_spec) unknown_stft = [] unknown_spec = [] for i in range(len(unknown_array)): temp3 = librosa.stft(unknown_array[i], n_fft=2048, window='hann', hop_length=512) unknown_stft.append(temp3) unknown_spec.append(librosa.amplitude_to_db(np.abs(temp3), ref=np.max)) #리스트를 넘파이 배열로 unknown_stft = np.array(unknown_stft) unknown_spec = np.array(unknown_spec)
In [ ]:
#각 배열의 shape확인 print("nali_stft 의 shape:", nali_stft.shape) print("nali_spec 의 shape:", nali_spec.shape) print("biden_stft 의 shape:", biden_stft.shape) print("biden_spec 의 shape:", biden_spec.shape) print("unknown_stft 의 shape:", unknown_stft.shape) print("unknown_spec 의 shape:", unknown_spec.shape)
nali_stft 의 shape: (24, 1025, 65) nali_spec 의 shape: (24, 1025, 65) biden_stft 의 shape: (24, 1025, 65) biden_spec 의 shape: (24, 1025, 65) unknown_stft 의 shape: (24, 1025, 65) unknown_spec 의 shape: (24, 1025, 65)

3.5.스펙트럼 분석결과 시각화

In [ ]:
unknown_spec_visual = unknown_spec biden_spec_visual = biden_spec nali_spec_visual = nali_spec
In [ ]:
librosa.display.specshow(nali_spec_visual[7], x_axis='time', y_axis='log') plt.colorbar(format='%+2.0f dB')
Out[ ]:
<matplotlib.colorbar.Colorbar at 0x7fe4a9b36dd0>
In [ ]:
#3개 클래스에서 각각 10개씩 총 30개 STFT 시각화 비교 nali_num=0 biden_num=0 unknown_num=0 plt.figure(figsize=(20,40)) for i in range(1,31): plt.subplot(10,3,i) if i%3 == 0: librosa.display.specshow(unknown_spec[unknown_num], x_axis='time', y_axis='log') plt.xlabel("unknown") unknown_num = unknown_num +1 elif i%3 == 1: librosa.display.specshow(biden_spec[biden_num], x_axis='time', y_axis='log') plt.xlabel("biden") biden_num = biden_num +1 elif i%3 == 2: librosa.display.specshow(nali_spec[nali_num], x_axis='time', y_axis='log') plt.xlabel("nali") nali_num = nali_num +1

3.6.멜스펙트럼으로 변환 후 시각화

In [ ]:
#하나만 멜 스펙트럼으로 변환해보기 S = librosa.feature.melspectrogram(nali_array[1], sr=sr, n_mels=128, fmax=8000) # db(데시벨)로 변환하기 위해 power_to_db()메서드 사용 mel_spec = librosa.display.specshow(librosa.power_to_db(S, ref=np.max), sr=sr, x_axis='time', y_axis='mel' ) plt.colorbar(format='%+2.0f dB') plt.show()
In [ ]:
#STFT와 멜 스펙트럼 변환 차이 살펴보기 plt.subplot(2,1,1) plt.xlabel("STFT") nali_stft1 = librosa.stft(nali_array[1], n_fft=2048, window='hann', hop_length=512) nali_spec = librosa.amplitude_to_db(np.abs(nali_stft1), ref=np.max) librosa.display.specshow(nali_spec, x_axis='time', y_axis='log') plt.colorbar(format='%+2.0f dB') plt.subplot(2,1,2) plt.xlabel("melspec") nali_mel_spec1 = librosa.feature.melspectrogram(nali_array[1], sr=sr, n_mels=128, fmax=8000) nali_mel_spec1_db = librosa.power_to_db(nali_mel_spec1, ref=np.max) librosa.display.specshow(nali_mel_spec1_db, x_axis='time', y_axis='mel') plt.colorbar(format='%+2.0f dB') plt.show()
In [ ]:
# 전체 데이터 멜 스펙트럼으로 변환 #Mel Scale Spectrum값과 데시벨로 변환한 mel_db값을 각각 저장 nali_mel_spec = [] #Mel Scale Spectrum값을 저장할 리스트 nali_mel_db = [] #mMel Scale Spectrum값을 데시벨로 바꾸어 저장할 리스트 for i in range(len(nali_array)): temp1 = librosa.feature.melspectrogram(nali_array[i], sr=sr, n_mels=128, fmax=8000) nali_mel_spec.append(temp1) nali_mel_db.append(librosa.amplitude_to_db(np.abs(temp1), ref=np.max)) #리스트를 넘파이 배열로 nali_mel_spec = np.array(nali_mel_spec) nali_mel_db = np.array(nali_mel_db) biden_mel_spec = [] #Mel Scale Spectrum값을 저장할 리스트 biden_mel_db = [] #mMel Scale Spectrum값을 데시벨로 바꾸어 저장할 리스트 for i in range(len(biden_array)): temp2 = librosa.feature.melspectrogram(biden_array[i], sr=sr, n_mels=128, fmax=8000) biden_mel_spec.append(temp2) biden_mel_db.append(librosa.amplitude_to_db(np.abs(temp2), ref=np.max)) #리스트를 넘파이 배열로 biden_mel_spec = np.array(biden_mel_spec) biden_mel_db = np.array(biden_mel_db) unknown_mel_spec = [] #Mel Scale Spectrum값을 저장할 리스트 unknown_mel_db = [] #mMel Scale Spectrum값을 데시벨로 바꾸어 저장할 리스트 for i in range(len(unknown_array)): temp3 = librosa.feature.melspectrogram(unknown_array[i], sr=sr, n_mels=128, fmax=8000) unknown_mel_spec.append(temp3) unknown_mel_db.append(librosa.amplitude_to_db(np.abs(temp3), ref=np.max)) #리스트를 넘파이 배열로 unknown_mel_spec = np.array(unknown_mel_spec) unknown_mel_db = np.array(unknown_mel_db)
In [ ]:
#각 배열의 shape확인 print("nali_stft 의 shape:", nali_mel_spec.shape) print("nali_spec 의 shape:", nali_mel_db.shape) print("biden_stft 의 shape:", biden_mel_spec.shape) print("biden_spec 의 shape:", biden_mel_db.shape) print("unknown_stft 의 shape:", unknown_mel_spec.shape) print("unknown_spec 의 shape:", unknown_mel_db.shape)
nali_stft 의 shape: (24, 128, 65) nali_spec 의 shape: (24, 128, 65) biden_stft 의 shape: (24, 128, 65) biden_spec 의 shape: (24, 128, 65) unknown_stft 의 shape: (24, 128, 65) unknown_spec 의 shape: (24, 128, 65)
In [ ]:
#3개 클래스에서 각각 10개씩 총 30개 STFT 시각화 비교 nali_num=0 biden_num=0 unknown_num=0 plt.figure(figsize=(20,40)) for i in range(1,31): plt.subplot(10,3,i) if i%3 == 0: librosa.display.specshow(unknown_mel_db[unknown_num], x_axis='time', y_axis='mel') plt.xlabel("unknown") unknown_num = unknown_num +1 elif i%3 == 1: librosa.display.specshow(biden_mel_db[biden_num], x_axis='time', y_axis='mel') plt.xlabel("biden") biden_num = biden_num +1 elif i%3 == 2: librosa.display.specshow(nali_mel_db[nali_num], x_axis='time', y_axis='mel') plt.xlabel("nali") nali_num = nali_num +1

3.7.데이터 분석의 결과

1.
STFT서는 잘 드러나지 않았지만 Mel spectogram으로 만들어 시각화해보면 바이든 음성과 날리면 음성의 차이를 볼 수 있음
'바이든'은 전체 주파수의 색상이 좀 더 고르게 분포되어
바이든의 경우 사람의 음성주파수가 저-고까지 골고루 사용되면서 특히 512 - 1024HZ대역의 색상이 도드라 보임
'날리면'은 512 이하의 저주파수의 색상이 도드라 보임을 알수있음
1.
이는 반면 '날리면'의 경우 음성주파수의 저주파 영역이 좀 더 강조되서 사용된다는 결론
2.
또한, 바이든의 경우 주파수가 시간대비 비대칭 적인 모습이 강한 반면, 날리면의 경우 주파수가 시간대비 좌우 대칭적인 모습이 좀 더 강하게 나타남을 볼 수 있음
3.
물론 여기까지는 실험자의 음성과 네이버 클로버 음성만 가지고 한 결과~

3.8.테스트 데이터 분석해보기

In [ ]:
# 실제 test해볼 파일을 지정해서 들어보기 test_file_path = '/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/test/test1.wav' y_test, sr = librosa.load(test_file_path) #일단 들어보기 display(Audio(data=y_test,rate=sr))
Your browser does not support the audio element.
In [ ]:
#멜스펙트럼으로 변환 test_mel = librosa.feature.melspectrogram(y_test, sr=sr, n_mels=128, fmax=8000) test_mel_db = librosa.amplitude_to_db(np.abs(test_mel), ref=np.max) librosa.display.specshow(test_mel_db, x_axis='time', y_axis='mel') plt.show()

4.음성 데이터 증강

화이트 노이즈 추가
shiftinf 추가
Stretching 추가(주의: 늘어지더라도 음성데이터 길이는 통일 시켜야 함)
Minus추가
피치 변경(음의 높이 또는 높낮이)

4.1.음성데이터 증강을 위한 함수 생성하기

In [ ]:
#1.white Noise 만드는 함수 def add_white_noise(data, sr=22050, noise_rate=np.random.uniform(0,0.3)): wn = np.random.randn(len(data)) data_wn = data + noise_rate*wn data_wn = data_wn.astype(type(data[0])) #노이즈 작업전 datatype으로 데이터 형태 변환 return data_wn
In [ ]:
#2.Shifting 만드는 함수 def shifting_sound(data, sr=22050, roll_rate=0.1): # 그냥 [1, 2, 3, 4] 를 [4, 1, 2, 3]으로 만들어주는 방식 data_roll = np.roll(data, int(len(data) * roll_rate)) data_roll = data_roll.astype(type(data[0])) return data_roll
In [ ]:
#3. stretch_sound 만드는 함수 def stretch_sound(data, sr=22050, roll_rate=0.8): # 그냥 [1, 2, 3, 4] 를 [4, 1, 2, 3]으로 만들어주는 방식 stretch_data = librosa.effects.time_stretch(data, roll_rate) stretch_data = stretch_data.astype(type(data[0])) #늘어나더라도 원본 데이터의 길이와 동일하게 잘라줌 stretch_data = stretch_data[:len(data)] return stretch_data
In [ ]:
#4. 위상뒤집기 def minus_sound(data, sr=22050): # 위상을 뒤집는 것으로서 원래 소리와 똑같이 들린다. temp_numpy = (-1.3)*data return temp_numpy
In [ ]:
#5. 피치 조절 def change_pitch(data, sr=22050, pitch_factor=np.random.randint(-5,5)): ch_pi = librosa.effects.pitch_shift(data, sr, pitch_factor) return ch_pi

4.2.전체 데이터에 대한 데이터 증강 실시

해당 배열과 동일한 zero배열을 만든 다음 음성 데이터 증강 함수를 사용해서 나온 결과(넘파일 배열)을 저장하는 방식
In [ ]:
#날리면 전체 넘파이 배열에 대해서 실시 #음성데이터 증강을 위해 넘파일 배열생성(shape은 동일하게 ) nali_array_ad = np.zeros_like(nali_array) nali_array_sh = np.zeros_like(nali_array) nali_array_st = np.zeros_like(nali_array) nali_array_mi = np.zeros_like(nali_array) nali_array_ch = np.zeros_like(nali_array) #실제 데이터 증강 실시1 for i in range(len(nali_array)): nali_array_ad[i] = add_white_noise(nali_array[i]) nali_array_sh[i] = shifting_sound(nali_array[i]) nali_array_st[i] = stretch_sound(nali_array[i]) nali_array_mi[i] = minus_sound(nali_array[i]) nali_array_ch[i] = change_pitch(nali_array[i])
In [ ]:
#바이든 전체 넘파이 배열에 대해서 실시 #음성데이터 증강을 위해 넘파일 배열생성(shape은 동일하게 ) biden_array_ad = np.zeros_like(biden_array) biden_array_sh = np.zeros_like(biden_array) biden_array_st = np.zeros_like(biden_array) biden_array_mi = np.zeros_like(biden_array) biden_array_ch = np.zeros_like(biden_array) #실제 데이터 증강 실시2 for i in range(len(biden_array)): biden_array_ad[i] = add_white_noise(biden_array[i]) biden_array_sh[i] = shifting_sound(biden_array[i]) biden_array_st[i] = stretch_sound(biden_array[i]) biden_array_mi[i] = minus_sound(biden_array[i]) biden_array_ch[i] = change_pitch(biden_array[i])
In [ ]:
#unknown 전체 넘파이 배열에 대해서 실시 #음성데이터 증강을 위해 넘파일 배열생성(shape은 동일하게 ) unknown_array_ad = np.zeros_like(unknown_array) unknown_array_sh = np.zeros_like(unknown_array) unknown_array_st = np.zeros_like(unknown_array) unknown_array_mi = np.zeros_like(unknown_array) unknown_array_ch = np.zeros_like(unknown_array) #실제 데이터 증강 실시3 for i in range(len(unknown_array)): unknown_array_ad[i] = add_white_noise(unknown_array[i]) unknown_array_sh[i] = shifting_sound(unknown_array[i]) unknown_array_st[i] = stretch_sound(unknown_array[i]) unknown_array_mi[i] = minus_sound(unknown_array[i]) unknown_array_ch[i] = change_pitch(unknown_array[i])

4.3. 만들어진 음성데이터와 원본데이터 합치기

원본 데이터 배열: biden_array, nali_array, unknown_biden_array
만들어진 데이터 배열: 각각 5 묶음씩
unknown_array_ad unknown_array_sh unknown_array_st unknown_array_mi unknown_array_ch
In [ ]:
unknown_array_ad.shape
Out[ ]:
(24, 33075)
In [ ]:
nali_hap = np.concatenate([nali_array, nali_array_ad, nali_array_sh, nali_array_st,nali_array_mi, nali_array_ch]) biden_hap = np.concatenate([biden_array, biden_array_ad, biden_array_sh, biden_array_st,biden_array_mi, biden_array_ch]) unknown_hap = np.concatenate([unknown_array, unknown_array_ad, unknown_array_sh, unknown_array_st,unknown_array_mi, unknown_array_ch])
In [ ]:
nali_hap.shape
Out[ ]:
(144, 33075)
In [ ]:
#아무거나 하나 끄집어 내서 들어보자 display(Audio(data=biden_hap[55],rate=sr))
Your browser does not support the audio element.

5.음성데이터 특성 추출(MFCC활용)

librosa라이브러리의 mfcc메서드 활용
librosa.feature.mfcc
1.
MFCC(Mel-frequency cepstral coefficients)이란?
Mel Scale Spectrum을 40개의 주파수 구역(band)으로 묶은뒤에 이를 다시 푸리에 변환하여 얻은 계수
스펙트럼이 어떤 모양으로 되어 있는지를 나타내는 특성값이라고 생각할 수 있음
1.
스펙트로그램과 비교하여 압축된 정보를 담고 있다고 생각할 수 있음
-> 오디오 신호 처리 분야에서 많이 사용되는 소리 데이터의 특징값(Feature)
1.
압축하는 과정에서 손실이 발생, 노이즈가 제거되는 효과가 있음
이 때문에 MFCC값이 고유의 음성 정보를 담고 있다고 보기도 함

5.0.왜 mfcc를 쓰는가?

MFCC는 실제로 화자 검증에 사용되기도 함
1.
화자 검증이란?
화자 인식(Speaker Recognition)의 세부 분류로서 말하는 사람이 그 사람이 맞는지를 확인하는 기술
시스템에 등록된 음성에만 반응하는 아이폰의 Siri를 예로 들 수 있음
MFCC는 등록된 음성과 현재 입력된 음성의 유사도를 판별하는 근거의 일부로 쓰임
1.
음악 장르 분류
MFCC는 음성뿐만 아니라 음악 신호에서도 사용됨
화자 인식에서 화자의 특징을 표현할 수 있는 것처럼, 음악의 특징도 MFCC로 표현할 수 있음

5.1.전체 데이터에 대해 mfcc값 추출

In [ ]:
#일단 1개 음성데이터만 mfcc값 추출 nali_mfccs_sample = librosa.feature.mfcc(y=nali_hap[1], sr=sr, n_mfcc=40) nali_mfccs_sample.shape
Out[ ]:
(40, 65)
In [ ]:
# 위와 비슷한 방식으로 진행 # 빈 리스트 생성 후 값을 저장한 다음 넘파이 배열로 전환 nali_mfccs = [] biden_mfccs = [] unknown_mfccs = [] for i in range(len(nali_hap)): nali_mfccs_temp = librosa.feature.mfcc(y=nali_hap[i], sr=sr, n_mfcc=40) nali_mfccs.append(nali_mfccs_temp) for i in range(len(biden_hap)): biden_mfccs_temp = librosa.feature.mfcc(y=biden_hap[i], sr=sr, n_mfcc=40) biden_mfccs.append(biden_mfccs_temp) for i in range(len(unknown_hap)): unknown_mfccs_temp = librosa.feature.mfcc(y=unknown_hap[i], sr=sr, n_mfcc=40) unknown_mfccs.append(unknown_mfccs_temp) #넘파이 배열로 nali_mfccs = np.array(nali_mfccs) biden_mfccs = np.array(biden_mfccs) unknown_mfccs = np.array(unknown_mfccs)
In [ ]:
#하나의 값 살펴보기 #주파수 밴드값 40개에 따른 값이 순차적으로 들어가 있음을 확인할 수 있음 print("shape살펴보기:", nali_mfccs[1].shape) nali_mfccs[1]
shape살펴보기: (40, 65)
Out[ ]:
array([[-4.9913110e+02, -4.9564725e+02, -4.4911636e+02, ..., -4.5145660e+02, -4.6994110e+02, -4.5325845e+02], [ 1.4472638e+02, 1.4387582e+02, 1.4847940e+02, ..., 1.9463066e+02, 1.7764575e+02, 1.3753247e+02], [-1.8510242e+01, -2.3417852e+01, -6.9817963e+01, ..., 3.1735716e+00, 8.2744229e-01, -4.1717410e+00], ..., [ 4.9690681e+00, -1.7284521e-01, -4.4170566e+00, ..., -5.6388378e+00, -5.0381408e+00, -2.0909131e+00], [ 1.7101536e+00, -1.2693942e+00, -4.0835123e+00, ..., -5.2187519e+00, -3.9217777e+00, -1.8445796e+00], [ 2.1824310e+00, -1.0145936e+00, -6.0215049e+00, ..., -3.6354413e+00, -4.1027637e+00, -7.1901979e+00]], dtype=float32)
In [ ]:
#3개의 배열을 합하여 train_data 셋 만들기 train = np.concatenate([nali_mfccs, biden_mfccs, unknown_mfccs]) train.shape
Out[ ]:
(432, 40, 65)
In [ ]:
len(train)
Out[ ]:
432

5.2.원핫인코딩을 통해 라벨링

In [ ]:
# 라벨 딕셔너리 생성 labels_dic = { 0:'nali', 1:'biden', 2:"unknown"}
In [ ]:
# train_hap의 길이와 동일한 1차원 배열 선언 labels_hap = np.array(range(len(train))) labels_hap[:len(nali_mfccs)] = 0 labels_hap[len(nali_mfccs): len(nali_mfccs) + len(biden_mfccs) ] = 1 labels_hap[len(nali_mfccs) + len(biden_mfccs):] = 2
In [ ]:
#전체 라벨 살펴보기 labels_hap
Out[ ]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
In [ ]:
#원핫 인코딩 labels = tf.keras.utils.to_categorical(labels_hap) print(labels)
[[1. 0. 0.] [1. 0. 0.] [1. 0. 0.] ... [0. 0. 1.] [0. 0. 1.] [0. 0. 1.]]

5.3.넘파이값 중간저장

여기까지 생성된 넘파이 배열값을 중간저장해보기
쭉이어서 실습하는 경우 생략 가능
In [ ]:
#넘파이 배열값 저장하기 np.savez('/content/drive/MyDrive/Colab Notebooks/8.음향관련/np_biden_nali/biden_nali.npz', x=train, y=labels) #각각 이름 붙여줘야 불러오기 가능
In [ ]:
#저장된 넘파이 값 불러오기 data = np.load('/content/drive/MyDrive/Colab Notebooks/8.음향관련/np_biden_nali/biden_nali.npz')
In [ ]:
# 불러온 넘파이 배열 객체의 요소들 살펴보기 list(data)
Out[ ]:
['x', 'y']
In [ ]:
# 저장된 값 확인 # 이때 data안의 x인자와 y인자로 다시 train과 labels를 지정하면 됨 train = data['x'] labels = data['y'] #잘 불러와졌는지 확인 train.shape
Out[ ]:
(432, 40, 65)
In [ ]:
# 1개 데이터 살펴보기 train[55]
Out[ ]:
array([[-4.8383432e+02, -4.8399628e+02, -4.8448148e+02, ..., -4.8263776e+02, -4.8268063e+02, -4.8698911e+02], [ 1.2132401e+02, 1.2063139e+02, 1.2019527e+02, ..., 1.2439251e+02, 1.2386364e+02, 1.2079936e+02], [-1.0269537e+01, -1.3739555e+01, -1.6760509e+01, ..., -9.4014015e+00, -9.7376108e+00, -7.8921719e+00], ..., [-3.8066702e+00, -6.0530100e+00, -4.7379303e+00, ..., -2.1580973e+00, -8.4639680e-01, -2.1941042e+00], [-5.6251526e+00, -4.9300432e+00, -3.5507956e+00, ..., -5.2756071e-03, -9.7138762e-01, -6.1927958e+00], [-1.3666394e+00, -2.7397871e-03, 2.1868539e-01, ..., -2.2799945e-01, -4.4908357e-01, -5.0657244e+00]], dtype=float32)

5.4.훈련 데이터 셋, 검증 데이터 셋을 만들기

In [ ]:
#사이킷런 라이브러리 활용 from sklearn.model_selection import train_test_split train_sound, test_sound, train_labels, test_labels = train_test_split(train, labels, test_size=0.2, random_state = 42) #훈련 데이터셋 살펴보기 train_sound.shape
Out[ ]:
(345, 40, 65)
In [ ]:
#훈련 데이터 라벨 살펴보기 train_labels
Out[ ]:
array([[1., 0., 0.], [0., 1., 0.], [1., 0., 0.], ..., [0., 1., 0.], [0., 0., 1.], [1., 0., 0.]], dtype=float32)
In [ ]:
#훈련데이터 하나를 음성으로 다시 변환해서 들어보고 temp = librosa.feature.inverse. mfcc_to_audio(train_sound[130]) display(Audio(data=temp,rate=sr))
Your browser does not support the audio element.
In [ ]:
#라벨링이 맞게 되어 있는지 확인 train_labels[130] # labels_dic = { 0:'nali', 1:'biden', 2:"unknown"}
Out[ ]:
array([1., 0., 0.], dtype=float32)

6.CNN모델 만들기(3개 클래스)

6.1.관련 메서드 불러오기

In [ ]:
from tensorflow.keras import layers from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Conv2D, MaxPool2D, Input, Dense, Flatten,Dropout, GlobalAvgPool2D

6.2.모델 만들기

다중분류로 진행하므로 손실함수는 바이너리 크로스 엔트로피가 아닌 categorical_cross_entropy 사용
In [ ]:
#함수형 API사용 # input데이터의 shape는 (배치, 40, 65) # output데이터의 shape는 (배치,3) 여기서3은 바이든, 날리면, 모르겠다 # 1번 모델은 풀링없이 def biden_nali_model1(): inputs = tf.keras.Input(shape=(40, 65,1)) x1 = Conv2D(16,2,activation= 'relu', padding='same')(inputs) x1 = Dropout(0.2)(x1) x2 = Conv2D(32,2,activation= 'relu', padding='same')(x1) x2 = MaxPool2D(2)(x2) x2 = Dropout(0.2)(x2) x3 = Conv2D(32,2,activation= 'relu', padding='same')(x2) x3 = Dropout(0.2)(x3) x4 = Conv2D(64,2,activation= 'relu', padding='same')(x3) x4 = Dropout(0.2)(x4) x5 = Conv2D(128,2,activation= 'relu')(x4) x5 = MaxPool2D(2)(x5) #마지막 단계에서는 dropout생략 x6 = GlobalAvgPool2D()(x5) outputs = Dense(3, activation='softmax')(x6) model = Model(inputs,outputs) return model
In [ ]:
def biden_nali_model2(): inputs = tf.keras.Input(shape=(40, 65,1)) x1 = Conv2D(16,2,activation= 'relu')(inputs) x1 = MaxPool2D(2)(x1) x1 = Dropout(0.2)(x1) x2 = Conv2D(32,2,activation= 'relu')(x1) x2 = MaxPool2D(2)(x2) x2 = Dropout(0.2)(x2) x3 = Conv2D(32,2,activation= 'relu')(x2) x3 = MaxPool2D(2)(x3) x3 = Dropout(0.2)(x3) x4 = Conv2D(64,2,activation= 'relu')(x3) x4 = MaxPool2D(2)(x4) x4 = Dropout(0.2)(x4) #마지막 단계에서는 dropout생략 x5 = Flatten()(x4) outputs = Dense(3, activation='softmax')(x5) model = Model(inputs,outputs) return model
In [ ]:
# 모델 만들고 모델 구조 확인 model1 = biden_nali_model1() model2 = biden_nali_model2()
In [ ]:
# 1번 모델의 구조 model1.summary()
Model: "model_8" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_10 (InputLayer) [(None, 40, 65, 1)] 0 conv2d_37 (Conv2D) (None, 40, 65, 16) 80 dropout_32 (Dropout) (None, 40, 65, 16) 0 conv2d_38 (Conv2D) (None, 40, 65, 32) 2080 max_pooling2d_27 (MaxPoolin (None, 20, 32, 32) 0 g2D) dropout_33 (Dropout) (None, 20, 32, 32) 0 conv2d_39 (Conv2D) (None, 20, 32, 32) 4128 dropout_34 (Dropout) (None, 20, 32, 32) 0 conv2d_40 (Conv2D) (None, 20, 32, 64) 8256 dropout_35 (Dropout) (None, 20, 32, 64) 0 conv2d_41 (Conv2D) (None, 19, 31, 128) 32896 max_pooling2d_28 (MaxPoolin (None, 9, 15, 128) 0 g2D) global_average_pooling2d_4 (None, 128) 0 (GlobalAveragePooling2D) dense_8 (Dense) (None, 3) 387 ================================================================= Total params: 47,827 Trainable params: 47,827 Non-trainable params: 0 _________________________________________________________________
In [ ]:
# 2번 모델의 구조 model2.summary()
Model: "model_9" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_11 (InputLayer) [(None, 40, 65, 1)] 0 conv2d_42 (Conv2D) (None, 39, 64, 16) 80 max_pooling2d_29 (MaxPoolin (None, 19, 32, 16) 0 g2D) dropout_36 (Dropout) (None, 19, 32, 16) 0 conv2d_43 (Conv2D) (None, 18, 31, 32) 2080 max_pooling2d_30 (MaxPoolin (None, 9, 15, 32) 0 g2D) dropout_37 (Dropout) (None, 9, 15, 32) 0 conv2d_44 (Conv2D) (None, 8, 14, 32) 4128 max_pooling2d_31 (MaxPoolin (None, 4, 7, 32) 0 g2D) dropout_38 (Dropout) (None, 4, 7, 32) 0 conv2d_45 (Conv2D) (None, 3, 6, 64) 8256 max_pooling2d_32 (MaxPoolin (None, 1, 3, 64) 0 g2D) dropout_39 (Dropout) (None, 1, 3, 64) 0 flatten_4 (Flatten) (None, 192) 0 dense_9 (Dense) (None, 3) 579 ================================================================= Total params: 15,123 Trainable params: 15,123 Non-trainable params: 0 _________________________________________________________________
In [ ]:
# 옵티마이져 설정 opt1 = tf.keras.optimizers.Adam(learning_rate=0.001) opt2 = tf.keras.optimizers.Adam(learning_rate=0.0005) model1.compile(loss = 'categorical_crossentropy', optimizer=opt1, metrics='accuracy') model2.compile(loss = 'categorical_crossentropy', optimizer=opt2, metrics='accuracy')
In [ ]:
callbacks = [tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)]

6.3.학습시키기

In [ ]:
# train_expand_images, train_labels을 학습시키고 15 epochs을 돌리고 그 진행 사항을 hist1에 저장 # train_expand_images의 shape와 model의 input데이터의 shape이 다르기 때문에 reshape필요 hist1 = model1.fit(train_sound.reshape(-1,40,65,1), train_labels, validation_data = (test_sound.reshape((-1,40,65,1)), test_labels), batch_size = 128, epochs=500, verbose=1, callbacks=callbacks)
Epoch 1/500 3/3 [==============================] - 0s 66ms/step - loss: 0.2373 - accuracy: 0.9043 - val_loss: 0.3829 - val_accuracy: 0.8966 Epoch 2/500 3/3 [==============================] - 0s 47ms/step - loss: 0.1825 - accuracy: 0.9333 - val_loss: 0.3802 - val_accuracy: 0.9080 Epoch 3/500 3/3 [==============================] - 0s 42ms/step - loss: 0.1749 - accuracy: 0.9333 - val_loss: 0.4042 - val_accuracy: 0.8966 Epoch 4/500 3/3 [==============================] - 0s 42ms/step - loss: 0.1879 - accuracy: 0.9246 - val_loss: 0.3670 - val_accuracy: 0.9080 Epoch 5/500 3/3 [==============================] - 0s 45ms/step - loss: 0.1785 - accuracy: 0.9275 - val_loss: 0.3627 - val_accuracy: 0.9195 Epoch 6/500 3/3 [==============================] - 0s 40ms/step - loss: 0.1655 - accuracy: 0.9304 - val_loss: 0.3590 - val_accuracy: 0.9080 Epoch 7/500 3/3 [==============================] - 0s 40ms/step - loss: 0.1855 - accuracy: 0.9304 - val_loss: 0.3578 - val_accuracy: 0.9310 Epoch 8/500 3/3 [==============================] - 0s 41ms/step - loss: 0.1741 - accuracy: 0.9362 - val_loss: 0.3635 - val_accuracy: 0.9310 Epoch 9/500 3/3 [==============================] - 0s 38ms/step - loss: 0.1700 - accuracy: 0.9391 - val_loss: 0.3733 - val_accuracy: 0.8966 Epoch 10/500 3/3 [==============================] - 0s 42ms/step - loss: 0.1712 - accuracy: 0.9478 - val_loss: 0.3781 - val_accuracy: 0.9195 Epoch 11/500 3/3 [==============================] - 0s 39ms/step - loss: 0.1800 - accuracy: 0.9333 - val_loss: 0.3786 - val_accuracy: 0.9080 Epoch 12/500 3/3 [==============================] - 0s 40ms/step - loss: 0.1967 - accuracy: 0.9217 - val_loss: 0.4012 - val_accuracy: 0.9195 Epoch 13/500 3/3 [==============================] - 0s 39ms/step - loss: 0.2125 - accuracy: 0.9130 - val_loss: 0.3809 - val_accuracy: 0.8966 Epoch 14/500 3/3 [==============================] - 0s 39ms/step - loss: 0.2407 - accuracy: 0.9101 - val_loss: 0.3935 - val_accuracy: 0.8851 Epoch 15/500 3/3 [==============================] - 0s 39ms/step - loss: 0.2333 - accuracy: 0.9043 - val_loss: 0.3600 - val_accuracy: 0.9195 Epoch 16/500 3/3 [==============================] - 0s 39ms/step - loss: 0.2164 - accuracy: 0.9101 - val_loss: 0.3697 - val_accuracy: 0.9195 Epoch 17/500 3/3 [==============================] - 0s 39ms/step - loss: 0.2206 - accuracy: 0.9101 - val_loss: 0.3755 - val_accuracy: 0.9195 Epoch 18/500 3/3 [==============================] - 0s 56ms/step - loss: 0.2315 - accuracy: 0.9101 - val_loss: 0.3928 - val_accuracy: 0.8966 Epoch 19/500 3/3 [==============================] - 0s 70ms/step - loss: 0.2094 - accuracy: 0.9188 - val_loss: 0.4336 - val_accuracy: 0.8966 Epoch 20/500 3/3 [==============================] - 0s 58ms/step - loss: 0.2261 - accuracy: 0.9043 - val_loss: 0.4493 - val_accuracy: 0.7931 Epoch 21/500 3/3 [==============================] - 0s 64ms/step - loss: 0.2484 - accuracy: 0.9101 - val_loss: 0.4418 - val_accuracy: 0.8621 Epoch 22/500 3/3 [==============================] - 0s 59ms/step - loss: 0.2004 - accuracy: 0.9043 - val_loss: 0.3654 - val_accuracy: 0.9195
In [ ]:
#학습 진행사항을 plt로 출력 # hist1의 accuracy plt의 plot을 이용하여 출력 plt.plot(hist1.history['accuracy'], label='accuracy') plt.plot(hist1.history['loss'], label='loss') plt.plot(hist1.history['val_accuracy'], label='val_accuracy') plt.plot(hist1.history['val_loss'], label='val_loss') plt.ylim(0.0, 1.0) plt.legend(loc='upper left') plt.show()
In [ ]:
# model2는 조기 종료 없이 진행 hist2 = model2.fit(train_sound.reshape(-1,40,65,1), train_labels, validation_data = (test_sound.reshape((-1,40,65,1)), test_labels), batch_size=128, epochs=1000, verbose=1)
Epoch 1/1000 3/3 [==============================] - 1s 207ms/step - loss: 10.6634 - accuracy: 0.3333 - val_loss: 1.8911 - val_accuracy: 0.4138 Epoch 2/1000 3/3 [==============================] - 0s 19ms/step - loss: 8.8385 - accuracy: 0.3594 - val_loss: 1.6298 - val_accuracy: 0.4253 Epoch 3/1000 3/3 [==============================] - 0s 20ms/step - loss: 8.1504 - accuracy: 0.2667 - val_loss: 1.3170 - val_accuracy: 0.4253 Epoch 4/1000 3/3 [==============================] - 0s 19ms/step - loss: 6.3507 - accuracy: 0.3797 - val_loss: 1.2881 - val_accuracy: 0.4483 Epoch 5/1000 3/3 [==============================] - 0s 22ms/step - loss: 6.8481 - accuracy: 0.2928 - val_loss: 1.1463 - val_accuracy: 0.4368 Epoch 6/1000 3/3 [==============================] - 0s 23ms/step - loss: 5.4418 - accuracy: 0.3188 - val_loss: 1.1798 - val_accuracy: 0.4023 Epoch 7/1000 3/3 [==============================] - 0s 21ms/step - loss: 5.6249 - accuracy: 0.3391 - val_loss: 1.1693 - val_accuracy: 0.4253 Epoch 8/1000 3/3 [==============================] - 0s 21ms/step - loss: 4.4611 - accuracy: 0.3449 - val_loss: 1.1246 - val_accuracy: 0.4483 Epoch 9/1000 3/3 [==============================] - 0s 21ms/step - loss: 4.2979 - accuracy: 0.3652 - val_loss: 1.0989 - val_accuracy: 0.4368 Epoch 10/1000 3/3 [==============================] - 0s 22ms/step - loss: 3.7040 - accuracy: 0.3565 - val_loss: 1.0631 - val_accuracy: 0.5402 Epoch 11/1000 3/3 [==============================] - 0s 21ms/step - loss: 3.5407 - accuracy: 0.3768 - val_loss: 1.0686 - val_accuracy: 0.5402 Epoch 12/1000 3/3 [==============================] - 0s 19ms/step - loss: 2.9471 - accuracy: 0.3971 - val_loss: 1.0719 - val_accuracy: 0.4943 Epoch 13/1000 3/3 [==============================] - 0s 20ms/step - loss: 3.1691 - accuracy: 0.3565 - val_loss: 1.0618 - val_accuracy: 0.5057 Epoch 14/1000 3/3 [==============================] - 0s 19ms/step - loss: 2.9005 - accuracy: 0.3623 - val_loss: 1.0645 - val_accuracy: 0.5172 Epoch 15/1000 3/3 [==============================] - 0s 21ms/step - loss: 2.7357 - accuracy: 0.3797 - val_loss: 1.0689 - val_accuracy: 0.4943 Epoch 16/1000 3/3 [==============================] - 0s 23ms/step - loss: 2.2361 - accuracy: 0.4290 - val_loss: 1.0668 - val_accuracy: 0.5057 Epoch 17/1000 3/3 [==============================] - 0s 22ms/step - loss: 2.5358 - accuracy: 0.3739 - val_loss: 1.0600 - val_accuracy: 0.4828 Epoch 18/1000 3/3 [==============================] - 0s 25ms/step - loss: 2.1070 - accuracy: 0.3710 - val_loss: 1.0611 - val_accuracy: 0.4943 Epoch 19/1000 3/3 [==============================] - 0s 22ms/step - loss: 2.2899 - accuracy: 0.3536 - val_loss: 1.0623 - val_accuracy: 0.4828 Epoch 20/1000 3/3 [==============================] - 0s 21ms/step - loss: 2.0500 - accuracy: 0.4174 - val_loss: 1.0592 - val_accuracy: 0.4828 Epoch 21/1000 3/3 [==============================] - 0s 26ms/step - loss: 2.0326 - accuracy: 0.3536 - val_loss: 1.0466 - val_accuracy: 0.4828 Epoch 22/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.9686 - accuracy: 0.3855 - val_loss: 1.0371 - val_accuracy: 0.4368 Epoch 23/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.7986 - accuracy: 0.3913 - val_loss: 1.0335 - val_accuracy: 0.4598 Epoch 24/1000 3/3 [==============================] - 0s 24ms/step - loss: 1.6429 - accuracy: 0.4203 - val_loss: 1.0315 - val_accuracy: 0.4598 Epoch 25/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.6483 - accuracy: 0.4290 - val_loss: 1.0270 - val_accuracy: 0.4483 Epoch 26/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.5953 - accuracy: 0.4290 - val_loss: 1.0219 - val_accuracy: 0.4828 Epoch 27/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.6324 - accuracy: 0.4058 - val_loss: 1.0179 - val_accuracy: 0.4598 Epoch 28/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.4463 - accuracy: 0.4377 - val_loss: 1.0183 - val_accuracy: 0.4483 Epoch 29/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.4832 - accuracy: 0.4290 - val_loss: 1.0197 - val_accuracy: 0.4483 Epoch 30/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.4317 - accuracy: 0.4580 - val_loss: 1.0203 - val_accuracy: 0.4483 Epoch 31/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.3526 - accuracy: 0.4493 - val_loss: 1.0217 - val_accuracy: 0.4598 Epoch 32/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.2652 - accuracy: 0.4609 - val_loss: 1.0185 - val_accuracy: 0.4483 Epoch 33/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.3732 - accuracy: 0.4435 - val_loss: 1.0106 - val_accuracy: 0.4713 Epoch 34/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.3832 - accuracy: 0.4029 - val_loss: 1.0063 - val_accuracy: 0.4713 Epoch 35/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.3429 - accuracy: 0.4174 - val_loss: 0.9999 - val_accuracy: 0.4828 Epoch 36/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.3910 - accuracy: 0.4116 - val_loss: 0.9896 - val_accuracy: 0.5172 Epoch 37/1000 3/3 [==============================] - 0s 30ms/step - loss: 1.2503 - accuracy: 0.4812 - val_loss: 0.9810 - val_accuracy: 0.5172 Epoch 38/1000 3/3 [==============================] - 0s 24ms/step - loss: 1.2076 - accuracy: 0.4812 - val_loss: 0.9746 - val_accuracy: 0.5172 Epoch 39/1000 3/3 [==============================] - 0s 24ms/step - loss: 1.1483 - accuracy: 0.5217 - val_loss: 0.9684 - val_accuracy: 0.5287 Epoch 40/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.0728 - accuracy: 0.5188 - val_loss: 0.9617 - val_accuracy: 0.5172 Epoch 41/1000 3/3 [==============================] - 0s 24ms/step - loss: 1.2473 - accuracy: 0.4406 - val_loss: 0.9545 - val_accuracy: 0.5172 Epoch 42/1000 3/3 [==============================] - 0s 23ms/step - loss: 1.1225 - accuracy: 0.4899 - val_loss: 0.9455 - val_accuracy: 0.5747 Epoch 43/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.1531 - accuracy: 0.4841 - val_loss: 0.9386 - val_accuracy: 0.5862 Epoch 44/1000 3/3 [==============================] - 0s 23ms/step - loss: 1.1298 - accuracy: 0.5014 - val_loss: 0.9325 - val_accuracy: 0.5632 Epoch 45/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.1001 - accuracy: 0.5130 - val_loss: 0.9268 - val_accuracy: 0.5977 Epoch 46/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.1131 - accuracy: 0.4986 - val_loss: 0.9235 - val_accuracy: 0.5747 Epoch 47/1000 3/3 [==============================] - 0s 23ms/step - loss: 1.0870 - accuracy: 0.5072 - val_loss: 0.9213 - val_accuracy: 0.5632 Epoch 48/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.9990 - accuracy: 0.5246 - val_loss: 0.9126 - val_accuracy: 0.5977 Epoch 49/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.0783 - accuracy: 0.5101 - val_loss: 0.9041 - val_accuracy: 0.6207 Epoch 50/1000 3/3 [==============================] - 0s 22ms/step - loss: 1.0289 - accuracy: 0.5014 - val_loss: 0.8930 - val_accuracy: 0.6207 Epoch 51/1000 3/3 [==============================] - 0s 21ms/step - loss: 1.1638 - accuracy: 0.4522 - val_loss: 0.8864 - val_accuracy: 0.6207 Epoch 52/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.9578 - accuracy: 0.5768 - val_loss: 0.8824 - val_accuracy: 0.6207 Epoch 53/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.9682 - accuracy: 0.5333 - val_loss: 0.8799 - val_accuracy: 0.6092 Epoch 54/1000 3/3 [==============================] - 0s 24ms/step - loss: 1.0474 - accuracy: 0.4957 - val_loss: 0.8767 - val_accuracy: 0.6322 Epoch 55/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.9907 - accuracy: 0.5478 - val_loss: 0.8736 - val_accuracy: 0.6322 Epoch 56/1000 3/3 [==============================] - 0s 20ms/step - loss: 1.0076 - accuracy: 0.5362 - val_loss: 0.8672 - val_accuracy: 0.6207 Epoch 57/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.9306 - accuracy: 0.5855 - val_loss: 0.8562 - val_accuracy: 0.6207 Epoch 58/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.9223 - accuracy: 0.5797 - val_loss: 0.8452 - val_accuracy: 0.5862 Epoch 59/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.9418 - accuracy: 0.5739 - val_loss: 0.8378 - val_accuracy: 0.5977 Epoch 60/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.9686 - accuracy: 0.5681 - val_loss: 0.8311 - val_accuracy: 0.5977 Epoch 61/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.8923 - accuracy: 0.5942 - val_loss: 0.8259 - val_accuracy: 0.6092 Epoch 62/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.9205 - accuracy: 0.5623 - val_loss: 0.8239 - val_accuracy: 0.6322 Epoch 63/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.8963 - accuracy: 0.5768 - val_loss: 0.8204 - val_accuracy: 0.6552 Epoch 64/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.8693 - accuracy: 0.5913 - val_loss: 0.8162 - val_accuracy: 0.6437 Epoch 65/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.8755 - accuracy: 0.6145 - val_loss: 0.8088 - val_accuracy: 0.6322 Epoch 66/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.8538 - accuracy: 0.6116 - val_loss: 0.8021 - val_accuracy: 0.6437 Epoch 67/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.8525 - accuracy: 0.6377 - val_loss: 0.7988 - val_accuracy: 0.6437 Epoch 68/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.8650 - accuracy: 0.6174 - val_loss: 0.7977 - val_accuracy: 0.6322 Epoch 69/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.8717 - accuracy: 0.5739 - val_loss: 0.7976 - val_accuracy: 0.6437 Epoch 70/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.8164 - accuracy: 0.6261 - val_loss: 0.7960 - val_accuracy: 0.6437 Epoch 71/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.7734 - accuracy: 0.6493 - val_loss: 0.7943 - val_accuracy: 0.6552 Epoch 72/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.7318 - accuracy: 0.6841 - val_loss: 0.7917 - val_accuracy: 0.6667 Epoch 73/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.8014 - accuracy: 0.6435 - val_loss: 0.7850 - val_accuracy: 0.6667 Epoch 74/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.8070 - accuracy: 0.6145 - val_loss: 0.7775 - val_accuracy: 0.6437 Epoch 75/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.7520 - accuracy: 0.6464 - val_loss: 0.7700 - val_accuracy: 0.6322 Epoch 76/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.8137 - accuracy: 0.6145 - val_loss: 0.7668 - val_accuracy: 0.6322 Epoch 77/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.7864 - accuracy: 0.6203 - val_loss: 0.7630 - val_accuracy: 0.6322 Epoch 78/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.8474 - accuracy: 0.6058 - val_loss: 0.7626 - val_accuracy: 0.6322 Epoch 79/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.6994 - accuracy: 0.6754 - val_loss: 0.7644 - val_accuracy: 0.6667 Epoch 80/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.7504 - accuracy: 0.6493 - val_loss: 0.7645 - val_accuracy: 0.6437 Epoch 81/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.7911 - accuracy: 0.6348 - val_loss: 0.7655 - val_accuracy: 0.6322 Epoch 82/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.7188 - accuracy: 0.6667 - val_loss: 0.7686 - val_accuracy: 0.6552 Epoch 83/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.6837 - accuracy: 0.6319 - val_loss: 0.7668 - val_accuracy: 0.6552 Epoch 84/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.8353 - accuracy: 0.6319 - val_loss: 0.7590 - val_accuracy: 0.6782 Epoch 85/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.8061 - accuracy: 0.6261 - val_loss: 0.7507 - val_accuracy: 0.6782 Epoch 86/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.7088 - accuracy: 0.6638 - val_loss: 0.7423 - val_accuracy: 0.6667 Epoch 87/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6890 - accuracy: 0.6899 - val_loss: 0.7355 - val_accuracy: 0.6897 Epoch 88/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6991 - accuracy: 0.6841 - val_loss: 0.7324 - val_accuracy: 0.6667 Epoch 89/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.7543 - accuracy: 0.6377 - val_loss: 0.7323 - val_accuracy: 0.6552 Epoch 90/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6988 - accuracy: 0.7130 - val_loss: 0.7341 - val_accuracy: 0.6667 Epoch 91/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.7298 - accuracy: 0.6435 - val_loss: 0.7355 - val_accuracy: 0.6782 Epoch 92/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6881 - accuracy: 0.6928 - val_loss: 0.7338 - val_accuracy: 0.6782 Epoch 93/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.7214 - accuracy: 0.6609 - val_loss: 0.7291 - val_accuracy: 0.6782 Epoch 94/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.6980 - accuracy: 0.6783 - val_loss: 0.7250 - val_accuracy: 0.6782 Epoch 95/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6822 - accuracy: 0.7217 - val_loss: 0.7190 - val_accuracy: 0.6782 Epoch 96/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6573 - accuracy: 0.7072 - val_loss: 0.7144 - val_accuracy: 0.6782 Epoch 97/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6897 - accuracy: 0.6696 - val_loss: 0.7157 - val_accuracy: 0.6897 Epoch 98/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.7413 - accuracy: 0.6551 - val_loss: 0.7228 - val_accuracy: 0.6897 Epoch 99/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6791 - accuracy: 0.6812 - val_loss: 0.7263 - val_accuracy: 0.6897 Epoch 100/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.6502 - accuracy: 0.6841 - val_loss: 0.7231 - val_accuracy: 0.6782 Epoch 101/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6717 - accuracy: 0.7159 - val_loss: 0.7147 - val_accuracy: 0.6897 Epoch 102/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6477 - accuracy: 0.6928 - val_loss: 0.7070 - val_accuracy: 0.6897 Epoch 103/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.6259 - accuracy: 0.6899 - val_loss: 0.7023 - val_accuracy: 0.6782 Epoch 104/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6310 - accuracy: 0.7304 - val_loss: 0.7002 - val_accuracy: 0.6782 Epoch 105/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6320 - accuracy: 0.7449 - val_loss: 0.7012 - val_accuracy: 0.6782 Epoch 106/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6554 - accuracy: 0.6870 - val_loss: 0.7056 - val_accuracy: 0.6897 Epoch 107/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6473 - accuracy: 0.6725 - val_loss: 0.7027 - val_accuracy: 0.7011 Epoch 108/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5790 - accuracy: 0.7478 - val_loss: 0.6932 - val_accuracy: 0.6782 Epoch 109/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6006 - accuracy: 0.7507 - val_loss: 0.6820 - val_accuracy: 0.6667 Epoch 110/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.5994 - accuracy: 0.7449 - val_loss: 0.6755 - val_accuracy: 0.6667 Epoch 111/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6475 - accuracy: 0.7014 - val_loss: 0.6756 - val_accuracy: 0.6667 Epoch 112/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.5550 - accuracy: 0.7507 - val_loss: 0.6755 - val_accuracy: 0.6667 Epoch 113/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.5740 - accuracy: 0.7362 - val_loss: 0.6739 - val_accuracy: 0.6782 Epoch 114/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.6435 - accuracy: 0.7275 - val_loss: 0.6729 - val_accuracy: 0.7011 Epoch 115/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5138 - accuracy: 0.7739 - val_loss: 0.6684 - val_accuracy: 0.7011 Epoch 116/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5880 - accuracy: 0.7275 - val_loss: 0.6625 - val_accuracy: 0.6782 Epoch 117/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.5936 - accuracy: 0.7188 - val_loss: 0.6571 - val_accuracy: 0.6667 Epoch 118/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6005 - accuracy: 0.7391 - val_loss: 0.6542 - val_accuracy: 0.6897 Epoch 119/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.5852 - accuracy: 0.7246 - val_loss: 0.6513 - val_accuracy: 0.7126 Epoch 120/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.5554 - accuracy: 0.7478 - val_loss: 0.6477 - val_accuracy: 0.7241 Epoch 121/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6032 - accuracy: 0.7362 - val_loss: 0.6415 - val_accuracy: 0.7126 Epoch 122/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.5656 - accuracy: 0.7333 - val_loss: 0.6338 - val_accuracy: 0.7126 Epoch 123/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5282 - accuracy: 0.7710 - val_loss: 0.6298 - val_accuracy: 0.7126 Epoch 124/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5553 - accuracy: 0.7565 - val_loss: 0.6280 - val_accuracy: 0.7241 Epoch 125/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.5147 - accuracy: 0.7710 - val_loss: 0.6283 - val_accuracy: 0.7586 Epoch 126/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.6067 - accuracy: 0.7188 - val_loss: 0.6280 - val_accuracy: 0.7471 Epoch 127/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.5945 - accuracy: 0.7391 - val_loss: 0.6266 - val_accuracy: 0.7471 Epoch 128/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5596 - accuracy: 0.7478 - val_loss: 0.6231 - val_accuracy: 0.7471 Epoch 129/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.5909 - accuracy: 0.7101 - val_loss: 0.6113 - val_accuracy: 0.7471 Epoch 130/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.5266 - accuracy: 0.7652 - val_loss: 0.6035 - val_accuracy: 0.7471 Epoch 131/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.5120 - accuracy: 0.7507 - val_loss: 0.5998 - val_accuracy: 0.7471 Epoch 132/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.5868 - accuracy: 0.7449 - val_loss: 0.6001 - val_accuracy: 0.7356 Epoch 133/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.4503 - accuracy: 0.8145 - val_loss: 0.6000 - val_accuracy: 0.7701 Epoch 134/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.5166 - accuracy: 0.7797 - val_loss: 0.5985 - val_accuracy: 0.7816 Epoch 135/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4810 - accuracy: 0.7826 - val_loss: 0.5932 - val_accuracy: 0.7586 Epoch 136/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.5250 - accuracy: 0.7623 - val_loss: 0.5827 - val_accuracy: 0.7701 Epoch 137/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4685 - accuracy: 0.7913 - val_loss: 0.5755 - val_accuracy: 0.7586 Epoch 138/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5359 - accuracy: 0.7652 - val_loss: 0.5733 - val_accuracy: 0.7701 Epoch 139/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.5138 - accuracy: 0.7739 - val_loss: 0.5706 - val_accuracy: 0.7701 Epoch 140/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4812 - accuracy: 0.7826 - val_loss: 0.5702 - val_accuracy: 0.7816 Epoch 141/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4626 - accuracy: 0.7942 - val_loss: 0.5700 - val_accuracy: 0.7816 Epoch 142/1000 3/3 [==============================] - 0s 20ms/step - loss: 0.4829 - accuracy: 0.7971 - val_loss: 0.5653 - val_accuracy: 0.7816 Epoch 143/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4846 - accuracy: 0.7884 - val_loss: 0.5628 - val_accuracy: 0.7816 Epoch 144/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4974 - accuracy: 0.7913 - val_loss: 0.5622 - val_accuracy: 0.7701 Epoch 145/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5493 - accuracy: 0.7710 - val_loss: 0.5614 - val_accuracy: 0.7586 Epoch 146/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4729 - accuracy: 0.8000 - val_loss: 0.5600 - val_accuracy: 0.7471 Epoch 147/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4673 - accuracy: 0.7884 - val_loss: 0.5567 - val_accuracy: 0.7701 Epoch 148/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.5370 - accuracy: 0.7681 - val_loss: 0.5505 - val_accuracy: 0.7816 Epoch 149/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4811 - accuracy: 0.7768 - val_loss: 0.5439 - val_accuracy: 0.7701 Epoch 150/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4691 - accuracy: 0.7739 - val_loss: 0.5398 - val_accuracy: 0.7931 Epoch 151/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4816 - accuracy: 0.7855 - val_loss: 0.5367 - val_accuracy: 0.7931 Epoch 152/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4327 - accuracy: 0.8000 - val_loss: 0.5358 - val_accuracy: 0.7931 Epoch 153/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4730 - accuracy: 0.7739 - val_loss: 0.5347 - val_accuracy: 0.8046 Epoch 154/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4601 - accuracy: 0.7884 - val_loss: 0.5359 - val_accuracy: 0.8046 Epoch 155/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4184 - accuracy: 0.8348 - val_loss: 0.5325 - val_accuracy: 0.8046 Epoch 156/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4549 - accuracy: 0.7971 - val_loss: 0.5246 - val_accuracy: 0.7931 Epoch 157/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4583 - accuracy: 0.7971 - val_loss: 0.5215 - val_accuracy: 0.7931 Epoch 158/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.4283 - accuracy: 0.8319 - val_loss: 0.5221 - val_accuracy: 0.7931 Epoch 159/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4256 - accuracy: 0.8174 - val_loss: 0.5224 - val_accuracy: 0.7931 Epoch 160/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.4271 - accuracy: 0.8029 - val_loss: 0.5216 - val_accuracy: 0.7931 Epoch 161/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4418 - accuracy: 0.8058 - val_loss: 0.5175 - val_accuracy: 0.7816 Epoch 162/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.4537 - accuracy: 0.7971 - val_loss: 0.5110 - val_accuracy: 0.8046 Epoch 163/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4504 - accuracy: 0.8116 - val_loss: 0.5051 - val_accuracy: 0.7816 Epoch 164/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4026 - accuracy: 0.8319 - val_loss: 0.5032 - val_accuracy: 0.7816 Epoch 165/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4345 - accuracy: 0.8116 - val_loss: 0.5057 - val_accuracy: 0.8046 Epoch 166/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.4475 - accuracy: 0.7942 - val_loss: 0.5086 - val_accuracy: 0.8046 Epoch 167/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3994 - accuracy: 0.8203 - val_loss: 0.5084 - val_accuracy: 0.8046 Epoch 168/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.4062 - accuracy: 0.8261 - val_loss: 0.5057 - val_accuracy: 0.8046 Epoch 169/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4188 - accuracy: 0.8174 - val_loss: 0.5006 - val_accuracy: 0.8046 Epoch 170/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.4172 - accuracy: 0.8203 - val_loss: 0.4962 - val_accuracy: 0.7701 Epoch 171/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4288 - accuracy: 0.8174 - val_loss: 0.4942 - val_accuracy: 0.7701 Epoch 172/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3906 - accuracy: 0.8348 - val_loss: 0.4964 - val_accuracy: 0.7586 Epoch 173/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3916 - accuracy: 0.8203 - val_loss: 0.4918 - val_accuracy: 0.7701 Epoch 174/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.4544 - accuracy: 0.7884 - val_loss: 0.4887 - val_accuracy: 0.7816 Epoch 175/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3987 - accuracy: 0.8203 - val_loss: 0.4887 - val_accuracy: 0.7931 Epoch 176/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3684 - accuracy: 0.8406 - val_loss: 0.4833 - val_accuracy: 0.7701 Epoch 177/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3816 - accuracy: 0.8232 - val_loss: 0.4787 - val_accuracy: 0.7816 Epoch 178/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4159 - accuracy: 0.7942 - val_loss: 0.4773 - val_accuracy: 0.7701 Epoch 179/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3642 - accuracy: 0.8377 - val_loss: 0.4774 - val_accuracy: 0.7701 Epoch 180/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3769 - accuracy: 0.8319 - val_loss: 0.4818 - val_accuracy: 0.7701 Epoch 181/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.4005 - accuracy: 0.8261 - val_loss: 0.4841 - val_accuracy: 0.7701 Epoch 182/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.4162 - accuracy: 0.8232 - val_loss: 0.4859 - val_accuracy: 0.7931 Epoch 183/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3827 - accuracy: 0.8406 - val_loss: 0.4801 - val_accuracy: 0.7701 Epoch 184/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.3680 - accuracy: 0.8435 - val_loss: 0.4762 - val_accuracy: 0.7816 Epoch 185/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3728 - accuracy: 0.8435 - val_loss: 0.4760 - val_accuracy: 0.7816 Epoch 186/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.3891 - accuracy: 0.8261 - val_loss: 0.4770 - val_accuracy: 0.7816 Epoch 187/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3538 - accuracy: 0.8667 - val_loss: 0.4821 - val_accuracy: 0.7816 Epoch 188/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3732 - accuracy: 0.8464 - val_loss: 0.4846 - val_accuracy: 0.7931 Epoch 189/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3478 - accuracy: 0.8493 - val_loss: 0.4783 - val_accuracy: 0.8046 Epoch 190/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3337 - accuracy: 0.8406 - val_loss: 0.4708 - val_accuracy: 0.7931 Epoch 191/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3921 - accuracy: 0.8232 - val_loss: 0.4632 - val_accuracy: 0.7816 Epoch 192/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3796 - accuracy: 0.8435 - val_loss: 0.4594 - val_accuracy: 0.7701 Epoch 193/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3748 - accuracy: 0.8261 - val_loss: 0.4581 - val_accuracy: 0.7701 Epoch 194/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.3500 - accuracy: 0.8406 - val_loss: 0.4572 - val_accuracy: 0.7816 Epoch 195/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.3077 - accuracy: 0.8609 - val_loss: 0.4594 - val_accuracy: 0.8046 Epoch 196/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3934 - accuracy: 0.8232 - val_loss: 0.4601 - val_accuracy: 0.8046 Epoch 197/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3402 - accuracy: 0.8377 - val_loss: 0.4608 - val_accuracy: 0.8161 Epoch 198/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3490 - accuracy: 0.8522 - val_loss: 0.4569 - val_accuracy: 0.8161 Epoch 199/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.4035 - accuracy: 0.8232 - val_loss: 0.4519 - val_accuracy: 0.8046 Epoch 200/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3578 - accuracy: 0.8406 - val_loss: 0.4494 - val_accuracy: 0.8161 Epoch 201/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3613 - accuracy: 0.8406 - val_loss: 0.4487 - val_accuracy: 0.8161 Epoch 202/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.3577 - accuracy: 0.8464 - val_loss: 0.4505 - val_accuracy: 0.7931 Epoch 203/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3363 - accuracy: 0.8638 - val_loss: 0.4519 - val_accuracy: 0.8046 Epoch 204/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3476 - accuracy: 0.8435 - val_loss: 0.4498 - val_accuracy: 0.8046 Epoch 205/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3474 - accuracy: 0.8522 - val_loss: 0.4484 - val_accuracy: 0.8046 Epoch 206/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3539 - accuracy: 0.8261 - val_loss: 0.4457 - val_accuracy: 0.8046 Epoch 207/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.3057 - accuracy: 0.8638 - val_loss: 0.4431 - val_accuracy: 0.8046 Epoch 208/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3206 - accuracy: 0.8493 - val_loss: 0.4407 - val_accuracy: 0.7816 Epoch 209/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3322 - accuracy: 0.8609 - val_loss: 0.4387 - val_accuracy: 0.8046 Epoch 210/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3323 - accuracy: 0.8725 - val_loss: 0.4386 - val_accuracy: 0.7816 Epoch 211/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3190 - accuracy: 0.8696 - val_loss: 0.4388 - val_accuracy: 0.7816 Epoch 212/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3375 - accuracy: 0.8522 - val_loss: 0.4383 - val_accuracy: 0.8161 Epoch 213/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3139 - accuracy: 0.8841 - val_loss: 0.4381 - val_accuracy: 0.8046 Epoch 214/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3432 - accuracy: 0.8580 - val_loss: 0.4366 - val_accuracy: 0.8046 Epoch 215/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.3142 - accuracy: 0.8522 - val_loss: 0.4326 - val_accuracy: 0.7931 Epoch 216/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3169 - accuracy: 0.8609 - val_loss: 0.4307 - val_accuracy: 0.8276 Epoch 217/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2985 - accuracy: 0.8493 - val_loss: 0.4305 - val_accuracy: 0.8161 Epoch 218/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3501 - accuracy: 0.8464 - val_loss: 0.4297 - val_accuracy: 0.8046 Epoch 219/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.3200 - accuracy: 0.8580 - val_loss: 0.4288 - val_accuracy: 0.8161 Epoch 220/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2669 - accuracy: 0.8899 - val_loss: 0.4286 - val_accuracy: 0.7931 Epoch 221/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.2997 - accuracy: 0.8522 - val_loss: 0.4257 - val_accuracy: 0.8046 Epoch 222/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.3323 - accuracy: 0.8609 - val_loss: 0.4232 - val_accuracy: 0.8046 Epoch 223/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3064 - accuracy: 0.8464 - val_loss: 0.4233 - val_accuracy: 0.8046 Epoch 224/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2942 - accuracy: 0.8754 - val_loss: 0.4248 - val_accuracy: 0.8276 Epoch 225/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3554 - accuracy: 0.8406 - val_loss: 0.4274 - val_accuracy: 0.8161 Epoch 226/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3192 - accuracy: 0.8638 - val_loss: 0.4275 - val_accuracy: 0.8161 Epoch 227/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.2902 - accuracy: 0.8812 - val_loss: 0.4271 - val_accuracy: 0.8046 Epoch 228/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2832 - accuracy: 0.8725 - val_loss: 0.4259 - val_accuracy: 0.8046 Epoch 229/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2750 - accuracy: 0.8783 - val_loss: 0.4269 - val_accuracy: 0.8046 Epoch 230/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3171 - accuracy: 0.8551 - val_loss: 0.4275 - val_accuracy: 0.8046 Epoch 231/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.2617 - accuracy: 0.8928 - val_loss: 0.4253 - val_accuracy: 0.7931 Epoch 232/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3045 - accuracy: 0.8609 - val_loss: 0.4220 - val_accuracy: 0.8161 Epoch 233/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2591 - accuracy: 0.9043 - val_loss: 0.4224 - val_accuracy: 0.7931 Epoch 234/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2877 - accuracy: 0.8667 - val_loss: 0.4216 - val_accuracy: 0.7931 Epoch 235/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.3016 - accuracy: 0.8754 - val_loss: 0.4207 - val_accuracy: 0.8046 Epoch 236/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2654 - accuracy: 0.8928 - val_loss: 0.4199 - val_accuracy: 0.7931 Epoch 237/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2768 - accuracy: 0.8696 - val_loss: 0.4212 - val_accuracy: 0.7931 Epoch 238/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2624 - accuracy: 0.8899 - val_loss: 0.4199 - val_accuracy: 0.7931 Epoch 239/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2556 - accuracy: 0.9159 - val_loss: 0.4170 - val_accuracy: 0.7931 Epoch 240/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2574 - accuracy: 0.8899 - val_loss: 0.4156 - val_accuracy: 0.8161 Epoch 241/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.2668 - accuracy: 0.9043 - val_loss: 0.4149 - val_accuracy: 0.8046 Epoch 242/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3429 - accuracy: 0.8696 - val_loss: 0.4153 - val_accuracy: 0.8046 Epoch 243/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2792 - accuracy: 0.8957 - val_loss: 0.4158 - val_accuracy: 0.7931 Epoch 244/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.3142 - accuracy: 0.8754 - val_loss: 0.4177 - val_accuracy: 0.8046 Epoch 245/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2529 - accuracy: 0.8841 - val_loss: 0.4191 - val_accuracy: 0.7931 Epoch 246/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.3454 - accuracy: 0.8493 - val_loss: 0.4193 - val_accuracy: 0.7931 Epoch 247/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2802 - accuracy: 0.8841 - val_loss: 0.4179 - val_accuracy: 0.7931 Epoch 248/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2646 - accuracy: 0.8928 - val_loss: 0.4142 - val_accuracy: 0.8046 Epoch 249/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2950 - accuracy: 0.8812 - val_loss: 0.4092 - val_accuracy: 0.8046 Epoch 250/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2944 - accuracy: 0.8667 - val_loss: 0.4053 - val_accuracy: 0.8161 Epoch 251/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2635 - accuracy: 0.8957 - val_loss: 0.4030 - val_accuracy: 0.8161 Epoch 252/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2535 - accuracy: 0.8725 - val_loss: 0.4022 - val_accuracy: 0.8161 Epoch 253/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2731 - accuracy: 0.8580 - val_loss: 0.4031 - val_accuracy: 0.8046 Epoch 254/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.3048 - accuracy: 0.8754 - val_loss: 0.4072 - val_accuracy: 0.8046 Epoch 255/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.3064 - accuracy: 0.8696 - val_loss: 0.4117 - val_accuracy: 0.7931 Epoch 256/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2640 - accuracy: 0.8957 - val_loss: 0.4119 - val_accuracy: 0.7931 Epoch 257/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2950 - accuracy: 0.8725 - val_loss: 0.4119 - val_accuracy: 0.8046 Epoch 258/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2544 - accuracy: 0.8928 - val_loss: 0.4084 - val_accuracy: 0.8046 Epoch 259/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2768 - accuracy: 0.8841 - val_loss: 0.4053 - val_accuracy: 0.8276 Epoch 260/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2777 - accuracy: 0.8841 - val_loss: 0.4044 - val_accuracy: 0.8161 Epoch 261/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2672 - accuracy: 0.8812 - val_loss: 0.4066 - val_accuracy: 0.8046 Epoch 262/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2631 - accuracy: 0.8986 - val_loss: 0.4080 - val_accuracy: 0.8046 Epoch 263/1000 3/3 [==============================] - 0s 44ms/step - loss: 0.2276 - accuracy: 0.8986 - val_loss: 0.4088 - val_accuracy: 0.8046 Epoch 264/1000 3/3 [==============================] - 0s 65ms/step - loss: 0.2116 - accuracy: 0.9043 - val_loss: 0.4104 - val_accuracy: 0.8046 Epoch 265/1000 3/3 [==============================] - 0s 58ms/step - loss: 0.2481 - accuracy: 0.8899 - val_loss: 0.4123 - val_accuracy: 0.8161 Epoch 266/1000 3/3 [==============================] - 0s 64ms/step - loss: 0.2655 - accuracy: 0.8957 - val_loss: 0.4131 - val_accuracy: 0.8046 Epoch 267/1000 3/3 [==============================] - 0s 82ms/step - loss: 0.2500 - accuracy: 0.8870 - val_loss: 0.4100 - val_accuracy: 0.7931 Epoch 268/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.2584 - accuracy: 0.8841 - val_loss: 0.4046 - val_accuracy: 0.8046 Epoch 269/1000 3/3 [==============================] - 0s 48ms/step - loss: 0.2784 - accuracy: 0.8928 - val_loss: 0.4010 - val_accuracy: 0.7931 Epoch 270/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2484 - accuracy: 0.8899 - val_loss: 0.3987 - val_accuracy: 0.8046 Epoch 271/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2964 - accuracy: 0.8783 - val_loss: 0.3994 - val_accuracy: 0.8046 Epoch 272/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2735 - accuracy: 0.8754 - val_loss: 0.4018 - val_accuracy: 0.8161 Epoch 273/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2825 - accuracy: 0.8870 - val_loss: 0.4016 - val_accuracy: 0.8046 Epoch 274/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2550 - accuracy: 0.9043 - val_loss: 0.4026 - val_accuracy: 0.8046 Epoch 275/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2908 - accuracy: 0.8696 - val_loss: 0.4041 - val_accuracy: 0.7931 Epoch 276/1000 3/3 [==============================] - 0s 56ms/step - loss: 0.2562 - accuracy: 0.9043 - val_loss: 0.4035 - val_accuracy: 0.7931 Epoch 277/1000 3/3 [==============================] - 0s 56ms/step - loss: 0.2806 - accuracy: 0.8754 - val_loss: 0.4010 - val_accuracy: 0.7931 Epoch 278/1000 3/3 [==============================] - 0s 57ms/step - loss: 0.2389 - accuracy: 0.9101 - val_loss: 0.3996 - val_accuracy: 0.7931 Epoch 279/1000 3/3 [==============================] - 0s 60ms/step - loss: 0.2188 - accuracy: 0.9043 - val_loss: 0.3984 - val_accuracy: 0.7931 Epoch 280/1000 3/3 [==============================] - 0s 52ms/step - loss: 0.2532 - accuracy: 0.8957 - val_loss: 0.3996 - val_accuracy: 0.8161 Epoch 281/1000 3/3 [==============================] - 0s 46ms/step - loss: 0.2563 - accuracy: 0.8899 - val_loss: 0.4002 - val_accuracy: 0.8161 Epoch 282/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.2439 - accuracy: 0.9014 - val_loss: 0.4008 - val_accuracy: 0.8046 Epoch 283/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2494 - accuracy: 0.8957 - val_loss: 0.4024 - val_accuracy: 0.8046 Epoch 284/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2200 - accuracy: 0.9246 - val_loss: 0.4044 - val_accuracy: 0.8046 Epoch 285/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2588 - accuracy: 0.8783 - val_loss: 0.4027 - val_accuracy: 0.8046 Epoch 286/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2399 - accuracy: 0.8957 - val_loss: 0.4013 - val_accuracy: 0.8046 Epoch 287/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.2813 - accuracy: 0.8812 - val_loss: 0.4016 - val_accuracy: 0.7931 Epoch 288/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2643 - accuracy: 0.8754 - val_loss: 0.4024 - val_accuracy: 0.7931 Epoch 289/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.2429 - accuracy: 0.9014 - val_loss: 0.4025 - val_accuracy: 0.7931 Epoch 290/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2309 - accuracy: 0.8957 - val_loss: 0.4029 - val_accuracy: 0.7931 Epoch 291/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2649 - accuracy: 0.8667 - val_loss: 0.4049 - val_accuracy: 0.7931 Epoch 292/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2218 - accuracy: 0.8986 - val_loss: 0.4045 - val_accuracy: 0.7931 Epoch 293/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2078 - accuracy: 0.9014 - val_loss: 0.4025 - val_accuracy: 0.7931 Epoch 294/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2359 - accuracy: 0.8986 - val_loss: 0.4035 - val_accuracy: 0.7931 Epoch 295/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2383 - accuracy: 0.9072 - val_loss: 0.4072 - val_accuracy: 0.7931 Epoch 296/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2404 - accuracy: 0.9043 - val_loss: 0.4089 - val_accuracy: 0.7931 Epoch 297/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2145 - accuracy: 0.9130 - val_loss: 0.4081 - val_accuracy: 0.8046 Epoch 298/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2552 - accuracy: 0.9159 - val_loss: 0.4053 - val_accuracy: 0.8046 Epoch 299/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2235 - accuracy: 0.9130 - val_loss: 0.4027 - val_accuracy: 0.7931 Epoch 300/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1984 - accuracy: 0.9275 - val_loss: 0.4020 - val_accuracy: 0.8046 Epoch 301/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2222 - accuracy: 0.9072 - val_loss: 0.4002 - val_accuracy: 0.8046 Epoch 302/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2405 - accuracy: 0.9043 - val_loss: 0.3970 - val_accuracy: 0.8161 Epoch 303/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2521 - accuracy: 0.8812 - val_loss: 0.3971 - val_accuracy: 0.8161 Epoch 304/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.2292 - accuracy: 0.9072 - val_loss: 0.3989 - val_accuracy: 0.8046 Epoch 305/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.2560 - accuracy: 0.8899 - val_loss: 0.3980 - val_accuracy: 0.8046 Epoch 306/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2390 - accuracy: 0.8899 - val_loss: 0.3985 - val_accuracy: 0.8046 Epoch 307/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2567 - accuracy: 0.9014 - val_loss: 0.3997 - val_accuracy: 0.7931 Epoch 308/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2174 - accuracy: 0.9246 - val_loss: 0.4001 - val_accuracy: 0.7931 Epoch 309/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2395 - accuracy: 0.8870 - val_loss: 0.3977 - val_accuracy: 0.8046 Epoch 310/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1994 - accuracy: 0.9304 - val_loss: 0.3955 - val_accuracy: 0.8046 Epoch 311/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2316 - accuracy: 0.9188 - val_loss: 0.3922 - val_accuracy: 0.8161 Epoch 312/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2122 - accuracy: 0.9072 - val_loss: 0.3902 - val_accuracy: 0.8161 Epoch 313/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.2619 - accuracy: 0.9101 - val_loss: 0.3892 - val_accuracy: 0.8046 Epoch 314/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2070 - accuracy: 0.9159 - val_loss: 0.3892 - val_accuracy: 0.8161 Epoch 315/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1922 - accuracy: 0.9159 - val_loss: 0.3923 - val_accuracy: 0.8046 Epoch 316/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2095 - accuracy: 0.9130 - val_loss: 0.3941 - val_accuracy: 0.8161 Epoch 317/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2340 - accuracy: 0.9014 - val_loss: 0.3905 - val_accuracy: 0.8046 Epoch 318/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2073 - accuracy: 0.9217 - val_loss: 0.3864 - val_accuracy: 0.8161 Epoch 319/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2015 - accuracy: 0.9159 - val_loss: 0.3865 - val_accuracy: 0.7931 Epoch 320/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1863 - accuracy: 0.9159 - val_loss: 0.3866 - val_accuracy: 0.7931 Epoch 321/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1921 - accuracy: 0.9246 - val_loss: 0.3884 - val_accuracy: 0.7931 Epoch 322/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2059 - accuracy: 0.9072 - val_loss: 0.3918 - val_accuracy: 0.8276 Epoch 323/1000 3/3 [==============================] - 0s 38ms/step - loss: 0.2426 - accuracy: 0.9014 - val_loss: 0.3909 - val_accuracy: 0.8161 Epoch 324/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1882 - accuracy: 0.9159 - val_loss: 0.3886 - val_accuracy: 0.8161 Epoch 325/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2359 - accuracy: 0.9014 - val_loss: 0.3885 - val_accuracy: 0.8161 Epoch 326/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2072 - accuracy: 0.9130 - val_loss: 0.3878 - val_accuracy: 0.8161 Epoch 327/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2004 - accuracy: 0.9275 - val_loss: 0.3863 - val_accuracy: 0.8161 Epoch 328/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2009 - accuracy: 0.9101 - val_loss: 0.3847 - val_accuracy: 0.8161 Epoch 329/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2114 - accuracy: 0.9043 - val_loss: 0.3851 - val_accuracy: 0.8161 Epoch 330/1000 3/3 [==============================] - 0s 35ms/step - loss: 0.2406 - accuracy: 0.9043 - val_loss: 0.3859 - val_accuracy: 0.8161 Epoch 331/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2045 - accuracy: 0.9130 - val_loss: 0.3877 - val_accuracy: 0.8161 Epoch 332/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1911 - accuracy: 0.9217 - val_loss: 0.3871 - val_accuracy: 0.8161 Epoch 333/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1663 - accuracy: 0.9333 - val_loss: 0.3858 - val_accuracy: 0.8161 Epoch 334/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2162 - accuracy: 0.9072 - val_loss: 0.3864 - val_accuracy: 0.8161 Epoch 335/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2125 - accuracy: 0.9246 - val_loss: 0.3862 - val_accuracy: 0.8161 Epoch 336/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1926 - accuracy: 0.9304 - val_loss: 0.3856 - val_accuracy: 0.8161 Epoch 337/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1903 - accuracy: 0.9217 - val_loss: 0.3862 - val_accuracy: 0.8161 Epoch 338/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1940 - accuracy: 0.9217 - val_loss: 0.3869 - val_accuracy: 0.8161 Epoch 339/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2088 - accuracy: 0.9130 - val_loss: 0.3857 - val_accuracy: 0.8161 Epoch 340/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2326 - accuracy: 0.9101 - val_loss: 0.3853 - val_accuracy: 0.8391 Epoch 341/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2136 - accuracy: 0.9072 - val_loss: 0.3818 - val_accuracy: 0.8391 Epoch 342/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2368 - accuracy: 0.9101 - val_loss: 0.3799 - val_accuracy: 0.8391 Epoch 343/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1859 - accuracy: 0.9014 - val_loss: 0.3803 - val_accuracy: 0.8391 Epoch 344/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1822 - accuracy: 0.9391 - val_loss: 0.3791 - val_accuracy: 0.8391 Epoch 345/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1768 - accuracy: 0.9275 - val_loss: 0.3780 - val_accuracy: 0.8391 Epoch 346/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2052 - accuracy: 0.9072 - val_loss: 0.3796 - val_accuracy: 0.8391 Epoch 347/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.2135 - accuracy: 0.9188 - val_loss: 0.3797 - val_accuracy: 0.8161 Epoch 348/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1829 - accuracy: 0.9217 - val_loss: 0.3778 - val_accuracy: 0.8161 Epoch 349/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2084 - accuracy: 0.9014 - val_loss: 0.3786 - val_accuracy: 0.8161 Epoch 350/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.2287 - accuracy: 0.9130 - val_loss: 0.3811 - val_accuracy: 0.8276 Epoch 351/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2024 - accuracy: 0.9014 - val_loss: 0.3831 - val_accuracy: 0.8276 Epoch 352/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1990 - accuracy: 0.9217 - val_loss: 0.3860 - val_accuracy: 0.8276 Epoch 353/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1955 - accuracy: 0.9217 - val_loss: 0.3843 - val_accuracy: 0.8276 Epoch 354/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1990 - accuracy: 0.9101 - val_loss: 0.3801 - val_accuracy: 0.8276 Epoch 355/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1759 - accuracy: 0.9362 - val_loss: 0.3767 - val_accuracy: 0.8506 Epoch 356/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1826 - accuracy: 0.9333 - val_loss: 0.3747 - val_accuracy: 0.8621 Epoch 357/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1618 - accuracy: 0.9478 - val_loss: 0.3730 - val_accuracy: 0.8621 Epoch 358/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1850 - accuracy: 0.9420 - val_loss: 0.3749 - val_accuracy: 0.8736 Epoch 359/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1827 - accuracy: 0.9304 - val_loss: 0.3761 - val_accuracy: 0.8736 Epoch 360/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1704 - accuracy: 0.9391 - val_loss: 0.3733 - val_accuracy: 0.8621 Epoch 361/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1993 - accuracy: 0.9275 - val_loss: 0.3690 - val_accuracy: 0.8506 Epoch 362/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1990 - accuracy: 0.9159 - val_loss: 0.3697 - val_accuracy: 0.8391 Epoch 363/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1669 - accuracy: 0.9333 - val_loss: 0.3716 - val_accuracy: 0.8391 Epoch 364/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1780 - accuracy: 0.9304 - val_loss: 0.3719 - val_accuracy: 0.8391 Epoch 365/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1829 - accuracy: 0.9304 - val_loss: 0.3744 - val_accuracy: 0.8276 Epoch 366/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1836 - accuracy: 0.9246 - val_loss: 0.3765 - val_accuracy: 0.8621 Epoch 367/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2229 - accuracy: 0.8928 - val_loss: 0.3703 - val_accuracy: 0.8506 Epoch 368/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.1541 - accuracy: 0.9391 - val_loss: 0.3650 - val_accuracy: 0.8621 Epoch 369/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1996 - accuracy: 0.9159 - val_loss: 0.3664 - val_accuracy: 0.8506 Epoch 370/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.2020 - accuracy: 0.9217 - val_loss: 0.3706 - val_accuracy: 0.8391 Epoch 371/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1695 - accuracy: 0.9449 - val_loss: 0.3736 - val_accuracy: 0.8276 Epoch 372/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1745 - accuracy: 0.9246 - val_loss: 0.3733 - val_accuracy: 0.8391 Epoch 373/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1736 - accuracy: 0.9333 - val_loss: 0.3717 - val_accuracy: 0.8506 Epoch 374/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2084 - accuracy: 0.9159 - val_loss: 0.3726 - val_accuracy: 0.8391 Epoch 375/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1883 - accuracy: 0.9217 - val_loss: 0.3729 - val_accuracy: 0.8506 Epoch 376/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1839 - accuracy: 0.9304 - val_loss: 0.3722 - val_accuracy: 0.8506 Epoch 377/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1962 - accuracy: 0.9304 - val_loss: 0.3694 - val_accuracy: 0.8506 Epoch 378/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1866 - accuracy: 0.9333 - val_loss: 0.3686 - val_accuracy: 0.8276 Epoch 379/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.1980 - accuracy: 0.9246 - val_loss: 0.3691 - val_accuracy: 0.8276 Epoch 380/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2146 - accuracy: 0.9246 - val_loss: 0.3713 - val_accuracy: 0.8276 Epoch 381/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1948 - accuracy: 0.9101 - val_loss: 0.3742 - val_accuracy: 0.8391 Epoch 382/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1790 - accuracy: 0.9217 - val_loss: 0.3749 - val_accuracy: 0.8391 Epoch 383/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1615 - accuracy: 0.9420 - val_loss: 0.3741 - val_accuracy: 0.8506 Epoch 384/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1485 - accuracy: 0.9391 - val_loss: 0.3729 - val_accuracy: 0.8736 Epoch 385/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1929 - accuracy: 0.9246 - val_loss: 0.3738 - val_accuracy: 0.8621 Epoch 386/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1754 - accuracy: 0.9333 - val_loss: 0.3742 - val_accuracy: 0.8621 Epoch 387/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1758 - accuracy: 0.9275 - val_loss: 0.3729 - val_accuracy: 0.8621 Epoch 388/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1767 - accuracy: 0.9217 - val_loss: 0.3713 - val_accuracy: 0.8736 Epoch 389/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1859 - accuracy: 0.9217 - val_loss: 0.3698 - val_accuracy: 0.8736 Epoch 390/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1597 - accuracy: 0.9362 - val_loss: 0.3674 - val_accuracy: 0.8621 Epoch 391/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1780 - accuracy: 0.9246 - val_loss: 0.3666 - val_accuracy: 0.8391 Epoch 392/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1947 - accuracy: 0.9217 - val_loss: 0.3676 - val_accuracy: 0.8276 Epoch 393/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2110 - accuracy: 0.9159 - val_loss: 0.3676 - val_accuracy: 0.8276 Epoch 394/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1615 - accuracy: 0.9159 - val_loss: 0.3677 - val_accuracy: 0.8506 Epoch 395/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.2139 - accuracy: 0.9101 - val_loss: 0.3605 - val_accuracy: 0.8506 Epoch 396/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1657 - accuracy: 0.9304 - val_loss: 0.3561 - val_accuracy: 0.8506 Epoch 397/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.1532 - accuracy: 0.9449 - val_loss: 0.3532 - val_accuracy: 0.8506 Epoch 398/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1798 - accuracy: 0.9159 - val_loss: 0.3547 - val_accuracy: 0.8506 Epoch 399/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1540 - accuracy: 0.9391 - val_loss: 0.3569 - val_accuracy: 0.8391 Epoch 400/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.2216 - accuracy: 0.8986 - val_loss: 0.3596 - val_accuracy: 0.8506 Epoch 401/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1834 - accuracy: 0.9159 - val_loss: 0.3625 - val_accuracy: 0.8391 Epoch 402/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2011 - accuracy: 0.9159 - val_loss: 0.3610 - val_accuracy: 0.8506 Epoch 403/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1778 - accuracy: 0.9246 - val_loss: 0.3615 - val_accuracy: 0.8506 Epoch 404/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.1491 - accuracy: 0.9420 - val_loss: 0.3649 - val_accuracy: 0.8851 Epoch 405/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1972 - accuracy: 0.9217 - val_loss: 0.3667 - val_accuracy: 0.8851 Epoch 406/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.2009 - accuracy: 0.9130 - val_loss: 0.3614 - val_accuracy: 0.8736 Epoch 407/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.1362 - accuracy: 0.9507 - val_loss: 0.3557 - val_accuracy: 0.8736 Epoch 408/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.1436 - accuracy: 0.9449 - val_loss: 0.3531 - val_accuracy: 0.8736 Epoch 409/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1733 - accuracy: 0.9449 - val_loss: 0.3520 - val_accuracy: 0.8621 Epoch 410/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1722 - accuracy: 0.9391 - val_loss: 0.3518 - val_accuracy: 0.8621 Epoch 411/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1557 - accuracy: 0.9362 - val_loss: 0.3543 - val_accuracy: 0.8621 Epoch 412/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1498 - accuracy: 0.9391 - val_loss: 0.3583 - val_accuracy: 0.8621 Epoch 413/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1986 - accuracy: 0.9246 - val_loss: 0.3595 - val_accuracy: 0.8506 Epoch 414/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1444 - accuracy: 0.9478 - val_loss: 0.3576 - val_accuracy: 0.8621 Epoch 415/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1547 - accuracy: 0.9420 - val_loss: 0.3585 - val_accuracy: 0.8621 Epoch 416/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1446 - accuracy: 0.9478 - val_loss: 0.3540 - val_accuracy: 0.8621 Epoch 417/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1463 - accuracy: 0.9420 - val_loss: 0.3466 - val_accuracy: 0.8851 Epoch 418/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.1617 - accuracy: 0.9391 - val_loss: 0.3449 - val_accuracy: 0.8851 Epoch 419/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1624 - accuracy: 0.9333 - val_loss: 0.3484 - val_accuracy: 0.8851 Epoch 420/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1587 - accuracy: 0.9362 - val_loss: 0.3485 - val_accuracy: 0.8851 Epoch 421/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1572 - accuracy: 0.9275 - val_loss: 0.3455 - val_accuracy: 0.8851 Epoch 422/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1669 - accuracy: 0.9246 - val_loss: 0.3438 - val_accuracy: 0.8851 Epoch 423/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1734 - accuracy: 0.9304 - val_loss: 0.3430 - val_accuracy: 0.8736 Epoch 424/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1494 - accuracy: 0.9362 - val_loss: 0.3438 - val_accuracy: 0.8736 Epoch 425/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.1487 - accuracy: 0.9536 - val_loss: 0.3445 - val_accuracy: 0.8851 Epoch 426/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1345 - accuracy: 0.9478 - val_loss: 0.3438 - val_accuracy: 0.8851 Epoch 427/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1474 - accuracy: 0.9333 - val_loss: 0.3412 - val_accuracy: 0.8966 Epoch 428/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1594 - accuracy: 0.9333 - val_loss: 0.3385 - val_accuracy: 0.8966 Epoch 429/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1774 - accuracy: 0.9217 - val_loss: 0.3354 - val_accuracy: 0.8966 Epoch 430/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1551 - accuracy: 0.9478 - val_loss: 0.3340 - val_accuracy: 0.8851 Epoch 431/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.2005 - accuracy: 0.9101 - val_loss: 0.3372 - val_accuracy: 0.8966 Epoch 432/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1332 - accuracy: 0.9391 - val_loss: 0.3415 - val_accuracy: 0.8851 Epoch 433/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1780 - accuracy: 0.9217 - val_loss: 0.3431 - val_accuracy: 0.8736 Epoch 434/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1735 - accuracy: 0.9333 - val_loss: 0.3397 - val_accuracy: 0.8966 Epoch 435/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1481 - accuracy: 0.9391 - val_loss: 0.3385 - val_accuracy: 0.8966 Epoch 436/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.1583 - accuracy: 0.9507 - val_loss: 0.3396 - val_accuracy: 0.8966 Epoch 437/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1585 - accuracy: 0.9420 - val_loss: 0.3410 - val_accuracy: 0.8966 Epoch 438/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1596 - accuracy: 0.9217 - val_loss: 0.3430 - val_accuracy: 0.8966 Epoch 439/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1591 - accuracy: 0.9449 - val_loss: 0.3454 - val_accuracy: 0.9080 Epoch 440/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1680 - accuracy: 0.9420 - val_loss: 0.3467 - val_accuracy: 0.8966 Epoch 441/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1458 - accuracy: 0.9333 - val_loss: 0.3478 - val_accuracy: 0.8966 Epoch 442/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.1754 - accuracy: 0.9362 - val_loss: 0.3474 - val_accuracy: 0.8851 Epoch 443/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1787 - accuracy: 0.9275 - val_loss: 0.3497 - val_accuracy: 0.8736 Epoch 444/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1636 - accuracy: 0.9420 - val_loss: 0.3517 - val_accuracy: 0.8621 Epoch 445/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1464 - accuracy: 0.9478 - val_loss: 0.3531 - val_accuracy: 0.8621 Epoch 446/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1546 - accuracy: 0.9420 - val_loss: 0.3513 - val_accuracy: 0.8966 Epoch 447/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1590 - accuracy: 0.9304 - val_loss: 0.3480 - val_accuracy: 0.8851 Epoch 448/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1730 - accuracy: 0.9130 - val_loss: 0.3490 - val_accuracy: 0.8966 Epoch 449/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1654 - accuracy: 0.9536 - val_loss: 0.3502 - val_accuracy: 0.9195 Epoch 450/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1279 - accuracy: 0.9536 - val_loss: 0.3460 - val_accuracy: 0.9080 Epoch 451/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.1413 - accuracy: 0.9478 - val_loss: 0.3413 - val_accuracy: 0.8966 Epoch 452/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1453 - accuracy: 0.9507 - val_loss: 0.3400 - val_accuracy: 0.8851 Epoch 453/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1500 - accuracy: 0.9507 - val_loss: 0.3409 - val_accuracy: 0.8851 Epoch 454/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1576 - accuracy: 0.9449 - val_loss: 0.3399 - val_accuracy: 0.8736 Epoch 455/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1327 - accuracy: 0.9594 - val_loss: 0.3388 - val_accuracy: 0.8966 Epoch 456/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1456 - accuracy: 0.9333 - val_loss: 0.3390 - val_accuracy: 0.8966 Epoch 457/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1410 - accuracy: 0.9420 - val_loss: 0.3396 - val_accuracy: 0.8966 Epoch 458/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1383 - accuracy: 0.9536 - val_loss: 0.3437 - val_accuracy: 0.8966 Epoch 459/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1634 - accuracy: 0.9217 - val_loss: 0.3470 - val_accuracy: 0.8736 Epoch 460/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1418 - accuracy: 0.9536 - val_loss: 0.3484 - val_accuracy: 0.8851 Epoch 461/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1706 - accuracy: 0.9420 - val_loss: 0.3487 - val_accuracy: 0.8966 Epoch 462/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1169 - accuracy: 0.9507 - val_loss: 0.3494 - val_accuracy: 0.8851 Epoch 463/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1079 - accuracy: 0.9594 - val_loss: 0.3510 - val_accuracy: 0.8851 Epoch 464/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1405 - accuracy: 0.9362 - val_loss: 0.3528 - val_accuracy: 0.8851 Epoch 465/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1549 - accuracy: 0.9420 - val_loss: 0.3535 - val_accuracy: 0.8851 Epoch 466/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1484 - accuracy: 0.9449 - val_loss: 0.3555 - val_accuracy: 0.8851 Epoch 467/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1577 - accuracy: 0.9333 - val_loss: 0.3612 - val_accuracy: 0.8966 Epoch 468/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1444 - accuracy: 0.9507 - val_loss: 0.3663 - val_accuracy: 0.8851 Epoch 469/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1475 - accuracy: 0.9478 - val_loss: 0.3683 - val_accuracy: 0.8851 Epoch 470/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1359 - accuracy: 0.9449 - val_loss: 0.3660 - val_accuracy: 0.8851 Epoch 471/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.1525 - accuracy: 0.9391 - val_loss: 0.3614 - val_accuracy: 0.8966 Epoch 472/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1373 - accuracy: 0.9507 - val_loss: 0.3575 - val_accuracy: 0.8966 Epoch 473/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1219 - accuracy: 0.9681 - val_loss: 0.3547 - val_accuracy: 0.8851 Epoch 474/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1663 - accuracy: 0.9391 - val_loss: 0.3551 - val_accuracy: 0.8851 Epoch 475/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1226 - accuracy: 0.9536 - val_loss: 0.3560 - val_accuracy: 0.8966 Epoch 476/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1638 - accuracy: 0.9217 - val_loss: 0.3562 - val_accuracy: 0.8966 Epoch 477/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1237 - accuracy: 0.9594 - val_loss: 0.3520 - val_accuracy: 0.8966 Epoch 478/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1510 - accuracy: 0.9594 - val_loss: 0.3467 - val_accuracy: 0.8966 Epoch 479/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1393 - accuracy: 0.9420 - val_loss: 0.3435 - val_accuracy: 0.8966 Epoch 480/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1459 - accuracy: 0.9507 - val_loss: 0.3413 - val_accuracy: 0.8966 Epoch 481/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1188 - accuracy: 0.9594 - val_loss: 0.3402 - val_accuracy: 0.8966 Epoch 482/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1450 - accuracy: 0.9449 - val_loss: 0.3402 - val_accuracy: 0.8966 Epoch 483/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1391 - accuracy: 0.9449 - val_loss: 0.3416 - val_accuracy: 0.9080 Epoch 484/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1262 - accuracy: 0.9594 - val_loss: 0.3455 - val_accuracy: 0.9080 Epoch 485/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1647 - accuracy: 0.9449 - val_loss: 0.3450 - val_accuracy: 0.9195 Epoch 486/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1269 - accuracy: 0.9652 - val_loss: 0.3462 - val_accuracy: 0.9195 Epoch 487/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.1072 - accuracy: 0.9536 - val_loss: 0.3469 - val_accuracy: 0.9195 Epoch 488/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.1236 - accuracy: 0.9391 - val_loss: 0.3475 - val_accuracy: 0.9195 Epoch 489/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1699 - accuracy: 0.9333 - val_loss: 0.3436 - val_accuracy: 0.8966 Epoch 490/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1270 - accuracy: 0.9362 - val_loss: 0.3424 - val_accuracy: 0.8966 Epoch 491/1000 3/3 [==============================] - 0s 21ms/step - loss: 0.1792 - accuracy: 0.9478 - val_loss: 0.3444 - val_accuracy: 0.8966 Epoch 492/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1249 - accuracy: 0.9681 - val_loss: 0.3449 - val_accuracy: 0.9080 Epoch 493/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1438 - accuracy: 0.9449 - val_loss: 0.3503 - val_accuracy: 0.9195 Epoch 494/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1218 - accuracy: 0.9478 - val_loss: 0.3593 - val_accuracy: 0.8851 Epoch 495/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1400 - accuracy: 0.9391 - val_loss: 0.3594 - val_accuracy: 0.8851 Epoch 496/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1380 - accuracy: 0.9507 - val_loss: 0.3515 - val_accuracy: 0.9080 Epoch 497/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1235 - accuracy: 0.9391 - val_loss: 0.3418 - val_accuracy: 0.9195 Epoch 498/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1543 - accuracy: 0.9449 - val_loss: 0.3373 - val_accuracy: 0.8966 Epoch 499/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1555 - accuracy: 0.9449 - val_loss: 0.3383 - val_accuracy: 0.8851 Epoch 500/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1447 - accuracy: 0.9565 - val_loss: 0.3408 - val_accuracy: 0.9080 Epoch 501/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1236 - accuracy: 0.9536 - val_loss: 0.3428 - val_accuracy: 0.9195 Epoch 502/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1264 - accuracy: 0.9478 - val_loss: 0.3435 - val_accuracy: 0.9195 Epoch 503/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1487 - accuracy: 0.9449 - val_loss: 0.3419 - val_accuracy: 0.9195 Epoch 504/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1447 - accuracy: 0.9420 - val_loss: 0.3364 - val_accuracy: 0.9195 Epoch 505/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1056 - accuracy: 0.9536 - val_loss: 0.3345 - val_accuracy: 0.9080 Epoch 506/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1138 - accuracy: 0.9594 - val_loss: 0.3332 - val_accuracy: 0.9195 Epoch 507/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1129 - accuracy: 0.9478 - val_loss: 0.3336 - val_accuracy: 0.9195 Epoch 508/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1545 - accuracy: 0.9304 - val_loss: 0.3349 - val_accuracy: 0.9195 Epoch 509/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1235 - accuracy: 0.9507 - val_loss: 0.3339 - val_accuracy: 0.9195 Epoch 510/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1293 - accuracy: 0.9362 - val_loss: 0.3369 - val_accuracy: 0.8966 Epoch 511/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1049 - accuracy: 0.9623 - val_loss: 0.3392 - val_accuracy: 0.8966 Epoch 512/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.1050 - accuracy: 0.9652 - val_loss: 0.3420 - val_accuracy: 0.8966 Epoch 513/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1374 - accuracy: 0.9594 - val_loss: 0.3434 - val_accuracy: 0.8966 Epoch 514/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1109 - accuracy: 0.9652 - val_loss: 0.3412 - val_accuracy: 0.9195 Epoch 515/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1264 - accuracy: 0.9420 - val_loss: 0.3388 - val_accuracy: 0.9195 Epoch 516/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1256 - accuracy: 0.9536 - val_loss: 0.3399 - val_accuracy: 0.9195 Epoch 517/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1292 - accuracy: 0.9536 - val_loss: 0.3475 - val_accuracy: 0.8966 Epoch 518/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1262 - accuracy: 0.9449 - val_loss: 0.3553 - val_accuracy: 0.8851 Epoch 519/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1102 - accuracy: 0.9565 - val_loss: 0.3588 - val_accuracy: 0.8851 Epoch 520/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1417 - accuracy: 0.9507 - val_loss: 0.3546 - val_accuracy: 0.8851 Epoch 521/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1160 - accuracy: 0.9536 - val_loss: 0.3437 - val_accuracy: 0.9080 Epoch 522/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1494 - accuracy: 0.9478 - val_loss: 0.3384 - val_accuracy: 0.9080 Epoch 523/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.1102 - accuracy: 0.9623 - val_loss: 0.3353 - val_accuracy: 0.8966 Epoch 524/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1199 - accuracy: 0.9507 - val_loss: 0.3357 - val_accuracy: 0.9080 Epoch 525/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1309 - accuracy: 0.9449 - val_loss: 0.3373 - val_accuracy: 0.9195 Epoch 526/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1200 - accuracy: 0.9449 - val_loss: 0.3380 - val_accuracy: 0.9195 Epoch 527/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1362 - accuracy: 0.9594 - val_loss: 0.3347 - val_accuracy: 0.9195 Epoch 528/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1449 - accuracy: 0.9362 - val_loss: 0.3343 - val_accuracy: 0.9195 Epoch 529/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0904 - accuracy: 0.9768 - val_loss: 0.3352 - val_accuracy: 0.9195 Epoch 530/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1582 - accuracy: 0.9246 - val_loss: 0.3392 - val_accuracy: 0.9195 Epoch 531/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1524 - accuracy: 0.9333 - val_loss: 0.3460 - val_accuracy: 0.8966 Epoch 532/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1147 - accuracy: 0.9623 - val_loss: 0.3507 - val_accuracy: 0.8966 Epoch 533/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1286 - accuracy: 0.9594 - val_loss: 0.3495 - val_accuracy: 0.8966 Epoch 534/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1336 - accuracy: 0.9623 - val_loss: 0.3412 - val_accuracy: 0.8966 Epoch 535/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1526 - accuracy: 0.9420 - val_loss: 0.3335 - val_accuracy: 0.9080 Epoch 536/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1214 - accuracy: 0.9478 - val_loss: 0.3308 - val_accuracy: 0.9080 Epoch 537/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1155 - accuracy: 0.9565 - val_loss: 0.3297 - val_accuracy: 0.9195 Epoch 538/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1244 - accuracy: 0.9507 - val_loss: 0.3309 - val_accuracy: 0.9195 Epoch 539/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1179 - accuracy: 0.9333 - val_loss: 0.3343 - val_accuracy: 0.9195 Epoch 540/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1097 - accuracy: 0.9565 - val_loss: 0.3380 - val_accuracy: 0.8966 Epoch 541/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1121 - accuracy: 0.9565 - val_loss: 0.3343 - val_accuracy: 0.8966 Epoch 542/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0961 - accuracy: 0.9565 - val_loss: 0.3326 - val_accuracy: 0.9195 Epoch 543/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1089 - accuracy: 0.9594 - val_loss: 0.3303 - val_accuracy: 0.9195 Epoch 544/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1113 - accuracy: 0.9594 - val_loss: 0.3294 - val_accuracy: 0.9195 Epoch 545/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1292 - accuracy: 0.9536 - val_loss: 0.3288 - val_accuracy: 0.9195 Epoch 546/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1119 - accuracy: 0.9449 - val_loss: 0.3348 - val_accuracy: 0.8966 Epoch 547/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1220 - accuracy: 0.9565 - val_loss: 0.3414 - val_accuracy: 0.8966 Epoch 548/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1075 - accuracy: 0.9536 - val_loss: 0.3414 - val_accuracy: 0.8966 Epoch 549/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0884 - accuracy: 0.9710 - val_loss: 0.3368 - val_accuracy: 0.8966 Epoch 550/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1211 - accuracy: 0.9594 - val_loss: 0.3324 - val_accuracy: 0.8966 Epoch 551/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1294 - accuracy: 0.9478 - val_loss: 0.3316 - val_accuracy: 0.8966 Epoch 552/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1259 - accuracy: 0.9478 - val_loss: 0.3314 - val_accuracy: 0.8966 Epoch 553/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1147 - accuracy: 0.9536 - val_loss: 0.3337 - val_accuracy: 0.8851 Epoch 554/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1372 - accuracy: 0.9478 - val_loss: 0.3305 - val_accuracy: 0.8851 Epoch 555/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0891 - accuracy: 0.9652 - val_loss: 0.3250 - val_accuracy: 0.8851 Epoch 556/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0966 - accuracy: 0.9623 - val_loss: 0.3198 - val_accuracy: 0.9080 Epoch 557/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1166 - accuracy: 0.9652 - val_loss: 0.3234 - val_accuracy: 0.8851 Epoch 558/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.0948 - accuracy: 0.9710 - val_loss: 0.3321 - val_accuracy: 0.8851 Epoch 559/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1178 - accuracy: 0.9594 - val_loss: 0.3403 - val_accuracy: 0.8851 Epoch 560/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0938 - accuracy: 0.9681 - val_loss: 0.3425 - val_accuracy: 0.8851 Epoch 561/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1106 - accuracy: 0.9536 - val_loss: 0.3345 - val_accuracy: 0.8966 Epoch 562/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1202 - accuracy: 0.9536 - val_loss: 0.3305 - val_accuracy: 0.9195 Epoch 563/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1024 - accuracy: 0.9594 - val_loss: 0.3282 - val_accuracy: 0.9195 Epoch 564/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0798 - accuracy: 0.9681 - val_loss: 0.3295 - val_accuracy: 0.9195 Epoch 565/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1197 - accuracy: 0.9536 - val_loss: 0.3327 - val_accuracy: 0.9195 Epoch 566/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1259 - accuracy: 0.9420 - val_loss: 0.3369 - val_accuracy: 0.9195 Epoch 567/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0854 - accuracy: 0.9652 - val_loss: 0.3343 - val_accuracy: 0.9195 Epoch 568/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0837 - accuracy: 0.9623 - val_loss: 0.3302 - val_accuracy: 0.9080 Epoch 569/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0816 - accuracy: 0.9739 - val_loss: 0.3324 - val_accuracy: 0.9080 Epoch 570/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1028 - accuracy: 0.9623 - val_loss: 0.3371 - val_accuracy: 0.8966 Epoch 571/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1490 - accuracy: 0.9478 - val_loss: 0.3422 - val_accuracy: 0.8851 Epoch 572/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0991 - accuracy: 0.9623 - val_loss: 0.3457 - val_accuracy: 0.8851 Epoch 573/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1216 - accuracy: 0.9710 - val_loss: 0.3465 - val_accuracy: 0.8966 Epoch 574/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0962 - accuracy: 0.9710 - val_loss: 0.3429 - val_accuracy: 0.8966 Epoch 575/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1106 - accuracy: 0.9623 - val_loss: 0.3371 - val_accuracy: 0.9080 Epoch 576/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1111 - accuracy: 0.9652 - val_loss: 0.3296 - val_accuracy: 0.9195 Epoch 577/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0994 - accuracy: 0.9594 - val_loss: 0.3261 - val_accuracy: 0.8966 Epoch 578/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.0978 - accuracy: 0.9623 - val_loss: 0.3270 - val_accuracy: 0.9195 Epoch 579/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1140 - accuracy: 0.9652 - val_loss: 0.3307 - val_accuracy: 0.9195 Epoch 580/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0782 - accuracy: 0.9826 - val_loss: 0.3356 - val_accuracy: 0.9310 Epoch 581/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1024 - accuracy: 0.9768 - val_loss: 0.3377 - val_accuracy: 0.9195 Epoch 582/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1461 - accuracy: 0.9449 - val_loss: 0.3305 - val_accuracy: 0.9310 Epoch 583/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1056 - accuracy: 0.9536 - val_loss: 0.3236 - val_accuracy: 0.9080 Epoch 584/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0783 - accuracy: 0.9681 - val_loss: 0.3214 - val_accuracy: 0.8966 Epoch 585/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0947 - accuracy: 0.9652 - val_loss: 0.3204 - val_accuracy: 0.8966 Epoch 586/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1106 - accuracy: 0.9565 - val_loss: 0.3223 - val_accuracy: 0.9080 Epoch 587/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0886 - accuracy: 0.9710 - val_loss: 0.3258 - val_accuracy: 0.9080 Epoch 588/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1168 - accuracy: 0.9594 - val_loss: 0.3259 - val_accuracy: 0.9080 Epoch 589/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0971 - accuracy: 0.9652 - val_loss: 0.3285 - val_accuracy: 0.9080 Epoch 590/1000 3/3 [==============================] - 0s 39ms/step - loss: 0.0855 - accuracy: 0.9681 - val_loss: 0.3364 - val_accuracy: 0.9080 Epoch 591/1000 3/3 [==============================] - 0s 30ms/step - loss: 0.1017 - accuracy: 0.9623 - val_loss: 0.3392 - val_accuracy: 0.9080 Epoch 592/1000 3/3 [==============================] - 0s 30ms/step - loss: 0.0977 - accuracy: 0.9507 - val_loss: 0.3375 - val_accuracy: 0.9080 Epoch 593/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1348 - accuracy: 0.9507 - val_loss: 0.3361 - val_accuracy: 0.9080 Epoch 594/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.1109 - accuracy: 0.9681 - val_loss: 0.3372 - val_accuracy: 0.9310 Epoch 595/1000 3/3 [==============================] - 0s 37ms/step - loss: 0.1093 - accuracy: 0.9478 - val_loss: 0.3389 - val_accuracy: 0.9195 Epoch 596/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1067 - accuracy: 0.9536 - val_loss: 0.3431 - val_accuracy: 0.8966 Epoch 597/1000 3/3 [==============================] - 0s 30ms/step - loss: 0.1165 - accuracy: 0.9536 - val_loss: 0.3451 - val_accuracy: 0.8966 Epoch 598/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0782 - accuracy: 0.9710 - val_loss: 0.3449 - val_accuracy: 0.9080 Epoch 599/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0845 - accuracy: 0.9681 - val_loss: 0.3425 - val_accuracy: 0.9080 Epoch 600/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0947 - accuracy: 0.9710 - val_loss: 0.3374 - val_accuracy: 0.9080 Epoch 601/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0971 - accuracy: 0.9594 - val_loss: 0.3331 - val_accuracy: 0.9080 Epoch 602/1000 3/3 [==============================] - 0s 38ms/step - loss: 0.1120 - accuracy: 0.9536 - val_loss: 0.3376 - val_accuracy: 0.9080 Epoch 603/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.0949 - accuracy: 0.9623 - val_loss: 0.3448 - val_accuracy: 0.8966 Epoch 604/1000 3/3 [==============================] - 0s 35ms/step - loss: 0.0985 - accuracy: 0.9594 - val_loss: 0.3519 - val_accuracy: 0.8966 Epoch 605/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.0907 - accuracy: 0.9652 - val_loss: 0.3555 - val_accuracy: 0.9080 Epoch 606/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.0984 - accuracy: 0.9594 - val_loss: 0.3460 - val_accuracy: 0.9080 Epoch 607/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.1111 - accuracy: 0.9594 - val_loss: 0.3405 - val_accuracy: 0.9080 Epoch 608/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.1239 - accuracy: 0.9536 - val_loss: 0.3377 - val_accuracy: 0.9080 Epoch 609/1000 3/3 [==============================] - 0s 32ms/step - loss: 0.0990 - accuracy: 0.9623 - val_loss: 0.3416 - val_accuracy: 0.8966 Epoch 610/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.0762 - accuracy: 0.9739 - val_loss: 0.3470 - val_accuracy: 0.8966 Epoch 611/1000 3/3 [==============================] - 0s 30ms/step - loss: 0.1097 - accuracy: 0.9623 - val_loss: 0.3511 - val_accuracy: 0.8966 Epoch 612/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.1082 - accuracy: 0.9652 - val_loss: 0.3531 - val_accuracy: 0.8966 Epoch 613/1000 3/3 [==============================] - 0s 40ms/step - loss: 0.0975 - accuracy: 0.9594 - val_loss: 0.3492 - val_accuracy: 0.8966 Epoch 614/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.0989 - accuracy: 0.9565 - val_loss: 0.3394 - val_accuracy: 0.9080 Epoch 615/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.1100 - accuracy: 0.9565 - val_loss: 0.3398 - val_accuracy: 0.8851 Epoch 616/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.0888 - accuracy: 0.9710 - val_loss: 0.3461 - val_accuracy: 0.8966 Epoch 617/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.0962 - accuracy: 0.9652 - val_loss: 0.3489 - val_accuracy: 0.8966 Epoch 618/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.0917 - accuracy: 0.9623 - val_loss: 0.3480 - val_accuracy: 0.9080 Epoch 619/1000 3/3 [==============================] - 0s 33ms/step - loss: 0.0878 - accuracy: 0.9710 - val_loss: 0.3486 - val_accuracy: 0.8966 Epoch 620/1000 3/3 [==============================] - 0s 35ms/step - loss: 0.1114 - accuracy: 0.9623 - val_loss: 0.3529 - val_accuracy: 0.8966 Epoch 621/1000 3/3 [==============================] - 0s 44ms/step - loss: 0.1230 - accuracy: 0.9565 - val_loss: 0.3452 - val_accuracy: 0.9080 Epoch 622/1000 3/3 [==============================] - 0s 42ms/step - loss: 0.0756 - accuracy: 0.9768 - val_loss: 0.3366 - val_accuracy: 0.9080 Epoch 623/1000 3/3 [==============================] - 0s 40ms/step - loss: 0.1003 - accuracy: 0.9594 - val_loss: 0.3363 - val_accuracy: 0.8966 Epoch 624/1000 3/3 [==============================] - 0s 38ms/step - loss: 0.1324 - accuracy: 0.9449 - val_loss: 0.3399 - val_accuracy: 0.8966 Epoch 625/1000 3/3 [==============================] - 0s 42ms/step - loss: 0.1137 - accuracy: 0.9623 - val_loss: 0.3418 - val_accuracy: 0.8851 Epoch 626/1000 3/3 [==============================] - 0s 41ms/step - loss: 0.0954 - accuracy: 0.9681 - val_loss: 0.3410 - val_accuracy: 0.8966 Epoch 627/1000 3/3 [==============================] - 0s 39ms/step - loss: 0.1143 - accuracy: 0.9536 - val_loss: 0.3355 - val_accuracy: 0.9080 Epoch 628/1000 3/3 [==============================] - 0s 39ms/step - loss: 0.0919 - accuracy: 0.9565 - val_loss: 0.3333 - val_accuracy: 0.9080 Epoch 629/1000 3/3 [==============================] - 0s 35ms/step - loss: 0.1088 - accuracy: 0.9507 - val_loss: 0.3332 - val_accuracy: 0.9080 Epoch 630/1000 3/3 [==============================] - 0s 44ms/step - loss: 0.0889 - accuracy: 0.9652 - val_loss: 0.3369 - val_accuracy: 0.9080 Epoch 631/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0780 - accuracy: 0.9797 - val_loss: 0.3430 - val_accuracy: 0.9195 Epoch 632/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.0614 - accuracy: 0.9826 - val_loss: 0.3483 - val_accuracy: 0.9080 Epoch 633/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0829 - accuracy: 0.9652 - val_loss: 0.3472 - val_accuracy: 0.9195 Epoch 634/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0733 - accuracy: 0.9768 - val_loss: 0.3455 - val_accuracy: 0.9080 Epoch 635/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.0864 - accuracy: 0.9652 - val_loss: 0.3456 - val_accuracy: 0.8966 Epoch 636/1000 3/3 [==============================] - 0s 37ms/step - loss: 0.0765 - accuracy: 0.9710 - val_loss: 0.3472 - val_accuracy: 0.8851 Epoch 637/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1352 - accuracy: 0.9362 - val_loss: 0.3465 - val_accuracy: 0.8851 Epoch 638/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1019 - accuracy: 0.9594 - val_loss: 0.3426 - val_accuracy: 0.8966 Epoch 639/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.0776 - accuracy: 0.9768 - val_loss: 0.3393 - val_accuracy: 0.9080 Epoch 640/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1153 - accuracy: 0.9565 - val_loss: 0.3411 - val_accuracy: 0.8966 Epoch 641/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1506 - accuracy: 0.9449 - val_loss: 0.3411 - val_accuracy: 0.8966 Epoch 642/1000 3/3 [==============================] - 0s 30ms/step - loss: 0.0741 - accuracy: 0.9739 - val_loss: 0.3380 - val_accuracy: 0.8966 Epoch 643/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.1119 - accuracy: 0.9565 - val_loss: 0.3342 - val_accuracy: 0.8966 Epoch 644/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1077 - accuracy: 0.9594 - val_loss: 0.3292 - val_accuracy: 0.8966 Epoch 645/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1276 - accuracy: 0.9507 - val_loss: 0.3302 - val_accuracy: 0.8966 Epoch 646/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.1331 - accuracy: 0.9594 - val_loss: 0.3372 - val_accuracy: 0.9080 Epoch 647/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0756 - accuracy: 0.9710 - val_loss: 0.3417 - val_accuracy: 0.9080 Epoch 648/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1145 - accuracy: 0.9623 - val_loss: 0.3419 - val_accuracy: 0.8966 Epoch 649/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1194 - accuracy: 0.9623 - val_loss: 0.3322 - val_accuracy: 0.9080 Epoch 650/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0822 - accuracy: 0.9710 - val_loss: 0.3250 - val_accuracy: 0.9080 Epoch 651/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0679 - accuracy: 0.9710 - val_loss: 0.3211 - val_accuracy: 0.8966 Epoch 652/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0712 - accuracy: 0.9768 - val_loss: 0.3175 - val_accuracy: 0.9080 Epoch 653/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0711 - accuracy: 0.9739 - val_loss: 0.3151 - val_accuracy: 0.9080 Epoch 654/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.0945 - accuracy: 0.9797 - val_loss: 0.3190 - val_accuracy: 0.8966 Epoch 655/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0707 - accuracy: 0.9768 - val_loss: 0.3233 - val_accuracy: 0.8966 Epoch 656/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.0747 - accuracy: 0.9710 - val_loss: 0.3262 - val_accuracy: 0.9080 Epoch 657/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0764 - accuracy: 0.9768 - val_loss: 0.3290 - val_accuracy: 0.8966 Epoch 658/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0860 - accuracy: 0.9768 - val_loss: 0.3299 - val_accuracy: 0.9080 Epoch 659/1000 3/3 [==============================] - 0s 31ms/step - loss: 0.1093 - accuracy: 0.9449 - val_loss: 0.3236 - val_accuracy: 0.8966 Epoch 660/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0862 - accuracy: 0.9797 - val_loss: 0.3236 - val_accuracy: 0.9080 Epoch 661/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0979 - accuracy: 0.9623 - val_loss: 0.3345 - val_accuracy: 0.9080 Epoch 662/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0614 - accuracy: 0.9797 - val_loss: 0.3441 - val_accuracy: 0.9080 Epoch 663/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1284 - accuracy: 0.9594 - val_loss: 0.3502 - val_accuracy: 0.9080 Epoch 664/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1082 - accuracy: 0.9594 - val_loss: 0.3510 - val_accuracy: 0.9080 Epoch 665/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.0870 - accuracy: 0.9652 - val_loss: 0.3459 - val_accuracy: 0.9195 Epoch 666/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0878 - accuracy: 0.9768 - val_loss: 0.3457 - val_accuracy: 0.9195 Epoch 667/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.0628 - accuracy: 0.9710 - val_loss: 0.3460 - val_accuracy: 0.9080 Epoch 668/1000 3/3 [==============================] - 0s 22ms/step - loss: 0.1032 - accuracy: 0.9594 - val_loss: 0.3522 - val_accuracy: 0.8966 Epoch 669/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0835 - accuracy: 0.9681 - val_loss: 0.3633 - val_accuracy: 0.8966 Epoch 670/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.1032 - accuracy: 0.9681 - val_loss: 0.3771 - val_accuracy: 0.8851 Epoch 671/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0899 - accuracy: 0.9565 - val_loss: 0.3805 - val_accuracy: 0.8851 Epoch 672/1000 3/3 [==============================] - 0s 36ms/step - loss: 0.1246 - accuracy: 0.9594 - val_loss: 0.3666 - val_accuracy: 0.9080 Epoch 673/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0892 - accuracy: 0.9594 - val_loss: 0.3560 - val_accuracy: 0.9080 Epoch 674/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0914 - accuracy: 0.9623 - val_loss: 0.3513 - val_accuracy: 0.9080 Epoch 675/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0902 - accuracy: 0.9623 - val_loss: 0.3471 - val_accuracy: 0.9195 Epoch 676/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1019 - accuracy: 0.9623 - val_loss: 0.3479 - val_accuracy: 0.9195 Epoch 677/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0739 - accuracy: 0.9768 - val_loss: 0.3508 - val_accuracy: 0.9080 Epoch 678/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0962 - accuracy: 0.9681 - val_loss: 0.3584 - val_accuracy: 0.8966 Epoch 679/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.0736 - accuracy: 0.9710 - val_loss: 0.3664 - val_accuracy: 0.9080 Epoch 680/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0799 - accuracy: 0.9739 - val_loss: 0.3663 - val_accuracy: 0.9080 Epoch 681/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0725 - accuracy: 0.9710 - val_loss: 0.3548 - val_accuracy: 0.9080 Epoch 682/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0857 - accuracy: 0.9652 - val_loss: 0.3419 - val_accuracy: 0.9195 Epoch 683/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.1057 - accuracy: 0.9623 - val_loss: 0.3383 - val_accuracy: 0.9080 Epoch 684/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.0824 - accuracy: 0.9681 - val_loss: 0.3409 - val_accuracy: 0.9080 Epoch 685/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0984 - accuracy: 0.9623 - val_loss: 0.3394 - val_accuracy: 0.9080 Epoch 686/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0872 - accuracy: 0.9652 - val_loss: 0.3353 - val_accuracy: 0.9080 Epoch 687/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0778 - accuracy: 0.9681 - val_loss: 0.3294 - val_accuracy: 0.9080 Epoch 688/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0891 - accuracy: 0.9652 - val_loss: 0.3275 - val_accuracy: 0.9080 Epoch 689/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0798 - accuracy: 0.9710 - val_loss: 0.3284 - val_accuracy: 0.9195 Epoch 690/1000 3/3 [==============================] - 0s 24ms/step - loss: 0.0871 - accuracy: 0.9565 - val_loss: 0.3306 - val_accuracy: 0.9195 Epoch 691/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.1253 - accuracy: 0.9594 - val_loss: 0.3377 - val_accuracy: 0.8966 Epoch 692/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0713 - accuracy: 0.9768 - val_loss: 0.3500 - val_accuracy: 0.9080 Epoch 693/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0817 - accuracy: 0.9826 - val_loss: 0.3536 - val_accuracy: 0.9080 Epoch 694/1000 3/3 [==============================] - 0s 27ms/step - loss: 0.1317 - accuracy: 0.9536 - val_loss: 0.3497 - val_accuracy: 0.8966 Epoch 695/1000 3/3 [==============================] - 0s 23ms/step - loss: 0.0713 - accuracy: 0.9768 - val_loss: 0.3535 - val_accuracy: 0.8966 Epoch 696/1000 3/3 [==============================] - 0s 26ms/step - loss: 0.0779 - accuracy: 0.9768 - val_loss: 0.3571 - val_accuracy: 0.8966 Epoch 697/1000 3/3 [==============================] - 0s 25ms/step - loss: 0.0876 - accuracy: 0.9681 - val_loss: 0.3578 - val_accuracy: 0.8966 Epoch 698/1000 3/3 [==============================] - 0s 28ms/step - loss: 0.0868 - accuracy: 0.9710 - val_loss: 0.3561 - val_accuracy: 0.8851 Epoch 699/1000 3/3 [==============================] - 0s 29ms/step - loss: 0.0806 - accuracy: 0.9739 - val_loss: 0.3560 - val_accuracy: 0.8851 Epoch 700/1000 3/3 [==============================] - 0s 34ms/step - loss: 0.0805 - accuracy: 0.9739 - val_loss: 0.3529 - val_accuracy: 0.8966 Epoch
In [ ]:
#학습 진행사항을 plt로 출력 # hist2의 accuracy plt의 plot을 이용하여 출력 plt.plot(hist2.history['accuracy'], label='accuracy') plt.plot(hist2.history['loss'], label='loss') plt.plot(hist2.history['val_accuracy'], label='val_accuracy') plt.plot(hist2.history['val_loss'], label='val_loss') plt.legend(loc='upper left') plt.ylim(0.0, 1.0) plt.show()

6.4.모델 평가하기

In [ ]:
#1번 모델 평가 model1.evaluate(test_sound.reshape(-1,40,65,1), test_labels, batch_size=32)
3/3 [==============================] - 0s 51ms/step - loss: 0.3654 - accuracy: 0.9195
Out[ ]:
[0.36540985107421875, 0.9195402264595032]
In [ ]:
#2번 모델 평가 model2.evaluate(test_sound.reshape(-1,40,65,1), test_labels, batch_size=32)
3/3 [==============================] - 0s 32ms/step - loss: 0.3797 - accuracy: 0.9310
Out[ ]:
[0.3796848952770233, 0.931034505367279]

6.5.테스트

해당 음성 데이터를 불러온 다음
mfcc변환한 값으로 테스트 해야 함
In [ ]:
file_path = '/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/test/test1.wav' test_yun_sound, sr = librosa.load(file_path)
In [ ]:
#테스트 사운드 들어보기 display(Audio(data=test_yun_sound,rate=sr))
Your browser does not support the audio element.
In [ ]:
#mfcc값으로 변환 전 음성데이터 길이 조절 max_len = 33075 zero_padding = tf.zeros(max_len - tf.shape(test_yun_sound), dtype=tf.float32) test_yun_sound = tf.concat([test_yun_sound, zero_padding],0) test_yun_sound = np.array(test_yun_sound) type(test_yun_sound)
Out[ ]:
numpy.ndarray
In [ ]:
#zero패딩된 테스트 음성 다시 들어보기 display(Audio(data=test_yun_sound,rate=sr))
Your browser does not support the audio element.
In [ ]:
#모델 주입전 mfcc값으로 변환 test_yun_mfcc = librosa.feature.mfcc(y=test_yun_sound, sr=sr, n_mfcc=40) test_yun_mfcc.shape
Out[ ]:
(40, 65)
In [ ]:
#모델에 주입하기 위해 shape 확인후 변환 #우리가 주입해야할 shape는 40,65인데 현재 yun데이터는 40,33 test_yun = test_yun_mfcc.reshape(1, 40, 65, 1) test_yun.shape
Out[ ]:
(1, 40, 65, 1)
In [ ]:
#test 데이터를 2개의 모델에 주입 yun_result1 = model1.predict(test_yun) yun_result2 = model2.predict(test_yun)
1/1 [==============================] - 0s 130ms/step 1/1 [==============================] - 0s 64ms/step
In [ ]:
# 결과확인1-숫자로 print("1번 모델의 결과:", yun_result1) print("2번 모델의 결과:", yun_result2)
1번 모델의 결과: [[8.4320849e-01 2.6454317e-04 1.5652700e-01]] 2번 모델의 결과: [[0.80751425 0.05412688 0.1383589 ]]
In [ ]:
#결과 확인2-그래프로 plt.subplot(2,1,1) plt.bar(range(3), yun_result1[0]) plt.subplot(2,1,2) plt.bar(range(3), yun_result2[0]) plt.show() print("날리면이면 0, 바이든이면1, cnn모델도 모르겠으면 2") # labels_dic = { 0:'nali', 1:'biden', 2:"unknown"}
날리면이면 0, 바이든이면1, cnn모델도 모르겠으면 2
In [ ]:
#결과가 이상하니 잡음제거 안된 원본 음성으로 file_path2 = '/content/drive/MyDrive/Colab Notebooks/8.음향관련/sj_sound_data/test/test_yun(잡음포함).wav' test_yun_sound2, sr = librosa.load(file_path2) display(Audio(data=test_yun_sound2,rate=sr))
Your browser does not support the audio element.
In [ ]:
test_yun_sound2.shape
Out[ ]:
(33075,)
In [ ]:
# 리브로사 라이브러리로 mfcc변환 test_yun_mfcc2 = librosa.feature.mfcc(y=test_yun_sound2, sr=sr, n_mfcc=40) test_yun2 = test_yun_mfcc2.reshape(1, 40, 65, 1)
In [ ]:
# 학습된 모델에 넣고 예측하기 yun_result3 = model1.predict(test_yun2) yun_result4 = model2.predict(test_yun2)
1/1 [==============================] - 0s 16ms/step 1/1 [==============================] - 0s 16ms/step
In [ ]:
#결과 확인2-그래프로 plt.subplot(2,1,1) plt.bar(range(3), yun_result3[0]) plt.subplot(2,1,2) plt.bar(range(3), yun_result4[0]) plt.show() print("날리면이면 0, 바이든이면1, cnn모델도 모르겠으면 2") # labels_dic = { 0:'nali', 1:'biden', 2:"unknown"}
날리면이면 0, 바이든이면1, cnn모델도 모르겠으면 2

7.클래스를 3개에서 2개로

이진분류로 진행하므로 손실함수는 바이너리 크로스 엔트로피 사용
In [ ]:
# 저장된 값 확인 # 이때 data안의 x인자와 y인자로 다시 train과 labels를 지정하면 됨 train = data['x'] labels = data['y'] #잘 불러와졌는지 확인 train.shape
Out[ ]:
(432, 40, 65)

7.1.라벨링 다시

In [ ]:
train2 = train[:288]
In [ ]:
labels_hap2 = np.array(range(len(train[:288]))) labels_hap2[:144] = 0 labels_hap2[144: ] = 1 labels2 = tf.keras.utils.to_categorical(labels_hap2) labels2
Out[ ]:
array([[1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [1., 0.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.], [0., 1.]], dtype=float32)
In [ ]:
train_sound2, test_sound2, train_labels2, test_labels2 = train_test_split(train2, labels2, test_size=0.2, random_state = 42)

7.2.모델 다시

In [ ]:
def biden_nali_model3(): inputs = tf.keras.Input(shape=(40, 65,1)) x1 = Conv2D(16,2,activation= 'relu', padding='same')(inputs) # x1 = MaxPool2D(2)(x1) x1 = Dropout(0.2)(x1) x2 = Conv2D(32,2,activation= 'relu')(x1) x2 = MaxPool2D(2)(x2) x2 = Dropout(0.2)(x2) x3 = Conv2D(32,2,activation= 'relu', padding='same')(x2) # x3 = MaxPool2D(2)(x3) x3 = Dropout(0.2)(x3) x4 = Conv2D(64,2,activation= 'relu')(x3) x4 = MaxPool2D(2)(x4) x4 = Dropout(0.2)(x4) x5 = Conv2D(128,2,activation= 'relu')(x4) x5 = MaxPool2D(2)(x5) #마지막 단계에서는 dropout생략 x6 = GlobalAvgPool2D()(x5) outputs = Dense(2, activation='softmax')(x6) model = Model(inputs,outputs) return model
In [ ]:
def biden_nali_model4(): inputs = tf.keras.Input(shape=(40, 65,1)) x1 = Conv2D(16,2,activation= 'relu')(inputs) x1 = MaxPool2D(2)(x1) x1 = Dropout(0.2)(x1) x2 = Conv2D(32,2,activation= 'relu')(x1) x2 = MaxPool2D(2)(x2) x2 = Dropout(0.2)(x2) x3 = Conv2D(32,2,activation= 'relu')(x2) x3 = MaxPool2D(2)(x3) x3 = Dropout(0.2)(x3) x4 = Conv2D(64,2,activation= 'relu')(x3) x4 = MaxPool2D(2)(x4) x4 = Dropout(0.2)(x4) #마지막 단계에서는 dropout생략 x5 = Flatten()(x4) outputs = Dense(2, activation='softmax')(x5) model = Model(inputs,outputs) return model
In [ ]:
# 모델 서머리 확인 model3 = biden_nali_model3() model4 = biden_nali_model4() model3.summary()
Model: "model_10" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_12 (InputLayer) [(None, 40, 65, 1)] 0 conv2d_46 (Conv2D) (None, 40, 65, 16) 80 dropout_40 (Dropout) (None, 40, 65, 16) 0 conv2d_47 (Conv2D) (None, 39, 64, 32) 2080 max_pooling2d_33 (MaxPoolin (None, 19, 32, 32) 0 g2D) dropout_41 (Dropout) (None, 19, 32, 32) 0 conv2d_48 (Conv2D) (None, 19, 32, 32) 4128 dropout_42 (Dropout) (None, 19, 32, 32) 0 conv2d_49 (Conv2D) (None, 18, 31, 64) 8256 max_pooling2d_34 (MaxPoolin (None, 9, 15, 64) 0 g2D) dropout_43 (Dropout) (None, 9, 15, 64) 0 conv2d_50 (Conv2D) (None, 8, 14, 128) 32896 max_pooling2d_35 (MaxPoolin (None, 4, 7, 128) 0 g2D) global_average_pooling2d_5 (None, 128) 0 (GlobalAveragePooling2D) dense_10 (Dense) (None, 2) 258 ================================================================= Total params: 47,698 Trainable params: 47,698 Non-trainable params: 0 _________________________________________________________________
In [ ]:
opt1 = tf.keras.optimizers.Adam(learning_rate=0.001) opt2 = tf.keras.optimizers.Adam(learning_rate=0.0005) model3.compile(loss = 'binary_crossentropy', optimizer=opt1, metrics='accuracy') model4.compile(loss = 'binary_crossentropy', optimizer=opt2, metrics='accuracy')

7.3.학습다시

In [ ]:
callbacks = [tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=30)]
In [ ]:
hist3 = model3.fit(train_sound2.reshape(-1,40,65,1), train_labels2, validation_data = (test_sound2.reshape((-1,40,65,1)), test_labels2), batch_size = 128, epochs=1000, verbose=1, callbacks=callbacks)
Epoch 1/1000 2/2 [==============================] - 0s 70ms/step - loss: 0.1764 - accuracy: 0.9348 - val_loss: 0.4788 - val_accuracy: 0.8621 Epoch 2/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.1604 - accuracy: 0.9391 - val_loss: 0.3853 - val_accuracy: 0.8966 Epoch 3/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.1690 - accuracy: 0.9435 - val_loss: 0.4133 - val_accuracy: 0.8966 Epoch 4/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.1601 - accuracy: 0.9391 - val_loss: 0.3938 - val_accuracy: 0.8793 Epoch 5/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1546 - accuracy: 0.9435 - val_loss: 0.3884 - val_accuracy: 0.8793 Epoch 6/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.1446 - accuracy: 0.9652 - val_loss: 0.4432 - val_accuracy: 0.8621 Epoch 7/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1507 - accuracy: 0.9391 - val_loss: 0.3808 - val_accuracy: 0.8966 Epoch 8/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.1405 - accuracy: 0.9522 - val_loss: 0.4124 - val_accuracy: 0.8621 Epoch 9/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1606 - accuracy: 0.9348 - val_loss: 0.3664 - val_accuracy: 0.8793 Epoch 10/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1497 - accuracy: 0.9348 - val_loss: 0.3336 - val_accuracy: 0.8966 Epoch 11/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1556 - accuracy: 0.9348 - val_loss: 0.4342 - val_accuracy: 0.8276 Epoch 12/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.1455 - accuracy: 0.9522 - val_loss: 0.3952 - val_accuracy: 0.8793 Epoch 13/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1604 - accuracy: 0.9217 - val_loss: 0.3218 - val_accuracy: 0.8966 Epoch 14/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1321 - accuracy: 0.9565 - val_loss: 0.3116 - val_accuracy: 0.8966 Epoch 15/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1380 - accuracy: 0.9652 - val_loss: 0.4978 - val_accuracy: 0.7759 Epoch 16/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1705 - accuracy: 0.9391 - val_loss: 0.2845 - val_accuracy: 0.8966 Epoch 17/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1695 - accuracy: 0.9217 - val_loss: 0.4674 - val_accuracy: 0.8103 Epoch 18/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1599 - accuracy: 0.9174 - val_loss: 0.4272 - val_accuracy: 0.8793 Epoch 19/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.1232 - accuracy: 0.9565 - val_loss: 0.2727 - val_accuracy: 0.8621 Epoch 20/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1593 - accuracy: 0.9391 - val_loss: 0.4939 - val_accuracy: 0.8276 Epoch 21/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1376 - accuracy: 0.9478 - val_loss: 0.3326 - val_accuracy: 0.8966 Epoch 22/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1526 - accuracy: 0.9304 - val_loss: 0.4135 - val_accuracy: 0.8966 Epoch 23/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1255 - accuracy: 0.9522 - val_loss: 0.4966 - val_accuracy: 0.8793 Epoch 24/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1304 - accuracy: 0.9478 - val_loss: 0.2772 - val_accuracy: 0.8621 Epoch 25/1000 2/2 [==============================] - 0s 52ms/step - loss: 0.1348 - accuracy: 0.9609 - val_loss: 0.4573 - val_accuracy: 0.8966 Epoch 26/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1361 - accuracy: 0.9435 - val_loss: 0.4341 - val_accuracy: 0.8966 Epoch 27/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.1157 - accuracy: 0.9696 - val_loss: 0.2887 - val_accuracy: 0.8966 Epoch 28/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.1110 - accuracy: 0.9609 - val_loss: 0.3879 - val_accuracy: 0.9138 Epoch 29/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.1138 - accuracy: 0.9522 - val_loss: 0.4001 - val_accuracy: 0.8966 Epoch 30/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.1133 - accuracy: 0.9609 - val_loss: 0.2816 - val_accuracy: 0.8966 Epoch 31/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1325 - accuracy: 0.9435 - val_loss: 0.3637 - val_accuracy: 0.8966 Epoch 32/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1083 - accuracy: 0.9609 - val_loss: 0.4041 - val_accuracy: 0.9138 Epoch 33/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1029 - accuracy: 0.9739 - val_loss: 0.2514 - val_accuracy: 0.8621 Epoch 34/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.1275 - accuracy: 0.9652 - val_loss: 0.4176 - val_accuracy: 0.9138 Epoch 35/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1263 - accuracy: 0.9522 - val_loss: 0.3127 - val_accuracy: 0.8966 Epoch 36/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.1106 - accuracy: 0.9609 - val_loss: 0.3014 - val_accuracy: 0.8966 Epoch 37/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0955 - accuracy: 0.9826 - val_loss: 0.3339 - val_accuracy: 0.9138 Epoch 38/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1260 - accuracy: 0.9522 - val_loss: 0.2379 - val_accuracy: 0.8793 Epoch 39/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.1223 - accuracy: 0.9565 - val_loss: 0.2765 - val_accuracy: 0.8793 Epoch 40/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.1249 - accuracy: 0.9565 - val_loss: 0.4741 - val_accuracy: 0.8448 Epoch 41/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1290 - accuracy: 0.9565 - val_loss: 0.1948 - val_accuracy: 0.8966 Epoch 42/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1582 - accuracy: 0.9391 - val_loss: 0.3969 - val_accuracy: 0.9138 Epoch 43/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1736 - accuracy: 0.9261 - val_loss: 0.3302 - val_accuracy: 0.9138 Epoch 44/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1461 - accuracy: 0.9478 - val_loss: 0.1916 - val_accuracy: 0.8966 Epoch 45/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1075 - accuracy: 0.9739 - val_loss: 0.3947 - val_accuracy: 0.8448 Epoch 46/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1210 - accuracy: 0.9391 - val_loss: 0.2729 - val_accuracy: 0.9138 Epoch 47/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.1003 - accuracy: 0.9739 - val_loss: 0.1818 - val_accuracy: 0.8966 Epoch 48/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.1117 - accuracy: 0.9652 - val_loss: 0.3876 - val_accuracy: 0.9138 Epoch 49/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1287 - accuracy: 0.9304 - val_loss: 0.3124 - val_accuracy: 0.9138 Epoch 50/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1059 - accuracy: 0.9696 - val_loss: 0.2093 - val_accuracy: 0.8966 Epoch 51/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1043 - accuracy: 0.9652 - val_loss: 0.3413 - val_accuracy: 0.9138 Epoch 52/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.1071 - accuracy: 0.9522 - val_loss: 0.3088 - val_accuracy: 0.9138 Epoch 53/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0833 - accuracy: 0.9783 - val_loss: 0.1699 - val_accuracy: 0.8966 Epoch 54/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.1082 - accuracy: 0.9609 - val_loss: 0.2642 - val_accuracy: 0.9138 Epoch 55/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1024 - accuracy: 0.9478 - val_loss: 0.3187 - val_accuracy: 0.9138 Epoch 56/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1208 - accuracy: 0.9522 - val_loss: 0.1874 - val_accuracy: 0.8966 Epoch 57/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0887 - accuracy: 0.9826 - val_loss: 0.2602 - val_accuracy: 0.8621 Epoch 58/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0945 - accuracy: 0.9739 - val_loss: 0.3512 - val_accuracy: 0.9138 Epoch 59/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0980 - accuracy: 0.9609 - val_loss: 0.2155 - val_accuracy: 0.8793 Epoch 60/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0990 - accuracy: 0.9696 - val_loss: 0.2136 - val_accuracy: 0.8793 Epoch 61/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0867 - accuracy: 0.9652 - val_loss: 0.2739 - val_accuracy: 0.9138 Epoch 62/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0917 - accuracy: 0.9739 - val_loss: 0.2204 - val_accuracy: 0.8793 Epoch 63/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0953 - accuracy: 0.9696 - val_loss: 0.2207 - val_accuracy: 0.8793 Epoch 64/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0774 - accuracy: 0.9870 - val_loss: 0.2577 - val_accuracy: 0.8793 Epoch 65/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0886 - accuracy: 0.9739 - val_loss: 0.2345 - val_accuracy: 0.8621 Epoch 66/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0706 - accuracy: 0.9870 - val_loss: 0.1817 - val_accuracy: 0.8966 Epoch 67/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0945 - accuracy: 0.9783 - val_loss: 0.2941 - val_accuracy: 0.9138 Epoch 68/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0922 - accuracy: 0.9696 - val_loss: 0.2773 - val_accuracy: 0.9138 Epoch 69/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0733 - accuracy: 0.9870 - val_loss: 0.2004 - val_accuracy: 0.8793 Epoch 70/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0753 - accuracy: 0.9739 - val_loss: 0.2098 - val_accuracy: 0.8966 Epoch 71/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0742 - accuracy: 0.9826 - val_loss: 0.2133 - val_accuracy: 0.9138 Epoch 72/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0804 - accuracy: 0.9739 - val_loss: 0.1760 - val_accuracy: 0.8966 Epoch 73/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0714 - accuracy: 0.9783 - val_loss: 0.1906 - val_accuracy: 0.9138 Epoch 74/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0797 - accuracy: 0.9696 - val_loss: 0.2231 - val_accuracy: 0.9138 Epoch 75/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0948 - accuracy: 0.9652 - val_loss: 0.1474 - val_accuracy: 0.9310 Epoch 76/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.1002 - accuracy: 0.9696 - val_loss: 0.2471 - val_accuracy: 0.8966 Epoch 77/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0994 - accuracy: 0.9565 - val_loss: 0.1795 - val_accuracy: 0.8966 Epoch 78/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0727 - accuracy: 0.9739 - val_loss: 0.1368 - val_accuracy: 0.9483 Epoch 79/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0726 - accuracy: 0.9826 - val_loss: 0.2171 - val_accuracy: 0.9310 Epoch 80/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0939 - accuracy: 0.9652 - val_loss: 0.2313 - val_accuracy: 0.9138 Epoch 81/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0778 - accuracy: 0.9652 - val_loss: 0.1296 - val_accuracy: 0.9310 Epoch 82/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0890 - accuracy: 0.9783 - val_loss: 0.1750 - val_accuracy: 0.9655 Epoch 83/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0882 - accuracy: 0.9696 - val_loss: 0.1815 - val_accuracy: 0.9483 Epoch 84/1000 2/2 [==============================] - 0s 57ms/step - loss: 0.0581 - accuracy: 0.9739 - val_loss: 0.1473 - val_accuracy: 0.9310 Epoch 85/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0724 - accuracy: 0.9826 - val_loss: 0.1623 - val_accuracy: 0.9138 Epoch 86/1000 2/2 [==============================] - 0s 54ms/step - loss: 0.0752 - accuracy: 0.9739 - val_loss: 0.2009 - val_accuracy: 0.9138 Epoch 87/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0669 - accuracy: 0.9826 - val_loss: 0.1485 - val_accuracy: 0.9310 Epoch 88/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0669 - accuracy: 0.9826 - val_loss: 0.1331 - val_accuracy: 0.9310 Epoch 89/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0688 - accuracy: 0.9826 - val_loss: 0.1495 - val_accuracy: 0.9483 Epoch 90/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0584 - accuracy: 0.9783 - val_loss: 0.1799 - val_accuracy: 0.9310 Epoch 91/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0733 - accuracy: 0.9783 - val_loss: 0.1481 - val_accuracy: 0.9310 Epoch 92/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0596 - accuracy: 0.9870 - val_loss: 0.1562 - val_accuracy: 0.9138 Epoch 93/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0626 - accuracy: 0.9826 - val_loss: 0.2218 - val_accuracy: 0.8966 Epoch 94/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0689 - accuracy: 0.9696 - val_loss: 0.1777 - val_accuracy: 0.9138 Epoch 95/1000 2/2 [==============================] - 0s 62ms/step - loss: 0.0563 - accuracy: 0.9826 - val_loss: 0.1237 - val_accuracy: 0.9483 Epoch 96/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0819 - accuracy: 0.9739 - val_loss: 0.1838 - val_accuracy: 0.9310 Epoch 97/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0537 - accuracy: 0.9870 - val_loss: 0.2070 - val_accuracy: 0.9138 Epoch 98/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0773 - accuracy: 0.9826 - val_loss: 0.1207 - val_accuracy: 0.9483 Epoch 99/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0727 - accuracy: 0.9783 - val_loss: 0.1314 - val_accuracy: 0.9310 Epoch 100/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0517 - accuracy: 0.9913 - val_loss: 0.1766 - val_accuracy: 0.9310 Epoch 101/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0576 - accuracy: 0.9739 - val_loss: 0.1346 - val_accuracy: 0.9655 Epoch 102/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0762 - accuracy: 0.9826 - val_loss: 0.1296 - val_accuracy: 0.9655 Epoch 103/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0663 - accuracy: 0.9826 - val_loss: 0.1670 - val_accuracy: 0.9483 Epoch 104/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0621 - accuracy: 0.9739 - val_loss: 0.1336 - val_accuracy: 0.9655 Epoch 105/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0656 - accuracy: 0.9783 - val_loss: 0.1188 - val_accuracy: 0.9483 Epoch 106/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0538 - accuracy: 0.9783 - val_loss: 0.1200 - val_accuracy: 0.9483 Epoch 107/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0585 - accuracy: 0.9826 - val_loss: 0.1864 - val_accuracy: 0.9310 Epoch 108/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0649 - accuracy: 0.9826 - val_loss: 0.1276 - val_accuracy: 0.9655 Epoch 109/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0606 - accuracy: 0.9870 - val_loss: 0.1191 - val_accuracy: 0.9655 Epoch 110/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0595 - accuracy: 0.9826 - val_loss: 0.1064 - val_accuracy: 0.9483 Epoch 111/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0704 - accuracy: 0.9870 - val_loss: 0.1303 - val_accuracy: 0.9655 Epoch 112/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0558 - accuracy: 0.9739 - val_loss: 0.1055 - val_accuracy: 0.9655 Epoch 113/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0625 - accuracy: 0.9870 - val_loss: 0.1105 - val_accuracy: 0.9655 Epoch 114/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0511 - accuracy: 0.9826 - val_loss: 0.1735 - val_accuracy: 0.9655 Epoch 115/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0676 - accuracy: 0.9696 - val_loss: 0.1051 - val_accuracy: 0.9828 Epoch 116/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0696 - accuracy: 0.9826 - val_loss: 0.1038 - val_accuracy: 0.9483 Epoch 117/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0603 - accuracy: 0.9826 - val_loss: 0.1272 - val_accuracy: 0.9655 Epoch 118/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0517 - accuracy: 0.9826 - val_loss: 0.1700 - val_accuracy: 0.9655 Epoch 119/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0554 - accuracy: 0.9870 - val_loss: 0.1331 - val_accuracy: 0.9483 Epoch 120/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0541 - accuracy: 0.9870 - val_loss: 0.0977 - val_accuracy: 0.9828 Epoch 121/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0446 - accuracy: 0.9913 - val_loss: 0.0946 - val_accuracy: 0.9828 Epoch 122/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0622 - accuracy: 0.9826 - val_loss: 0.1030 - val_accuracy: 0.9828 Epoch 123/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0487 - accuracy: 0.9870 - val_loss: 0.0975 - val_accuracy: 0.9828 Epoch 124/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0519 - accuracy: 0.9826 - val_loss: 0.1195 - val_accuracy: 0.9655 Epoch 125/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0531 - accuracy: 0.9826 - val_loss: 0.1555 - val_accuracy: 0.9483 Epoch 126/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0566 - accuracy: 0.9783 - val_loss: 0.1124 - val_accuracy: 0.9483 Epoch 127/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0589 - accuracy: 0.9783 - val_loss: 0.2973 - val_accuracy: 0.9138 Epoch 128/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0905 - accuracy: 0.9696 - val_loss: 0.1477 - val_accuracy: 0.9483 Epoch 129/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0648 - accuracy: 0.9783 - val_loss: 0.0949 - val_accuracy: 0.9655 Epoch 130/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0539 - accuracy: 0.9870 - val_loss: 0.1863 - val_accuracy: 0.9310 Epoch 131/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0599 - accuracy: 0.9739 - val_loss: 0.1950 - val_accuracy: 0.9310 Epoch 132/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0763 - accuracy: 0.9739 - val_loss: 0.1026 - val_accuracy: 0.9483 Epoch 133/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0877 - accuracy: 0.9696 - val_loss: 0.2717 - val_accuracy: 0.9138 Epoch 134/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1293 - accuracy: 0.9435 - val_loss: 0.1302 - val_accuracy: 0.9483 Epoch 135/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1012 - accuracy: 0.9696 - val_loss: 0.0922 - val_accuracy: 0.9828 Epoch 136/1000 2/2 [==============================] - 0s 54ms/step - loss: 0.1083 - accuracy: 0.9652 - val_loss: 0.1233 - val_accuracy: 0.9655 Epoch 137/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0479 - accuracy: 0.9870 - val_loss: 0.1191 - val_accuracy: 0.9310 Epoch 138/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0919 - accuracy: 0.9652 - val_loss: 0.1484 - val_accuracy: 0.9483 Epoch 139/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0508 - accuracy: 0.9826 - val_loss: 0.4519 - val_accuracy: 0.8793 Epoch 140/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.1028 - accuracy: 0.9609 - val_loss: 0.1143 - val_accuracy: 0.9483 Epoch 141/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.1131 - accuracy: 0.9565 - val_loss: 0.1076 - val_accuracy: 0.9655 Epoch 142/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0578 - accuracy: 0.9739 - val_loss: 0.3124 - val_accuracy: 0.8448 Epoch 143/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0667 - accuracy: 0.9652 - val_loss: 0.1363 - val_accuracy: 0.9483 Epoch 144/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0518 - accuracy: 0.9783 - val_loss: 0.1095 - val_accuracy: 0.9310 Epoch 145/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0760 - accuracy: 0.9739 - val_loss: 0.0937 - val_accuracy: 0.9828 Epoch 146/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0484 - accuracy: 0.9783 - val_loss: 0.1921 - val_accuracy: 0.9483 Epoch 147/1000 2/2 [==============================] - 0s 66ms/step - loss: 0.0698 - accuracy: 0.9696 - val_loss: 0.1282 - val_accuracy: 0.9483 Epoch 148/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0500 - accuracy: 0.9826 - val_loss: 0.0981 - val_accuracy: 0.9483 Epoch 149/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0775 - accuracy: 0.9870 - val_loss: 0.0947 - val_accuracy: 0.9483 Epoch 150/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0402 - accuracy: 0.9870 - val_loss: 0.2477 - val_accuracy: 0.9138 Epoch 151/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.1077 - accuracy: 0.9652 - val_loss: 0.1163 - val_accuracy: 0.9483 Epoch 152/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0566 - accuracy: 0.9870 - val_loss: 0.1754 - val_accuracy: 0.9138 Epoch 153/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.1489 - accuracy: 0.9522 - val_loss: 0.2137 - val_accuracy: 0.9483 Epoch 154/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.1452 - accuracy: 0.9391 - val_loss: 0.1790 - val_accuracy: 0.9655 Epoch 155/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0685 - accuracy: 0.9652 - val_loss: 0.1468 - val_accuracy: 0.9310 Epoch 156/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.1586 - accuracy: 0.9304 - val_loss: 0.1551 - val_accuracy: 0.9483 Epoch 157/1000 2/2 [==============================] - 0s 55ms/step - loss: 0.0805 - accuracy: 0.9696 - val_loss: 0.3124 - val_accuracy: 0.8621 Epoch 158/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.1004 - accuracy: 0.9565 - val_loss: 0.0936 - val_accuracy: 0.9483 Epoch 159/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0703 - accuracy: 0.9783 - val_loss: 0.1335 - val_accuracy: 0.9310 Epoch 160/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0847 - accuracy: 0.9652 - val_loss: 0.0908 - val_accuracy: 0.9828 Epoch 161/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0506 - accuracy: 0.9783 - val_loss: 0.1456 - val_accuracy: 0.9483 Epoch 162/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0581 - accuracy: 0.9783 - val_loss: 0.0979 - val_accuracy: 0.9828 Epoch 163/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0584 - accuracy: 0.9826 - val_loss: 0.0940 - val_accuracy: 0.9483 Epoch 164/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0623 - accuracy: 0.9913 - val_loss: 0.0925 - val_accuracy: 0.9483 Epoch 165/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0450 - accuracy: 0.9913 - val_loss: 0.1224 - val_accuracy: 0.9483 Epoch 166/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0421 - accuracy: 0.9913 - val_loss: 0.1651 - val_accuracy: 0.9483 Epoch 167/1000 2/2 [==============================] - 0s 54ms/step - loss: 0.0520 - accuracy: 0.9826 - val_loss: 0.1048 - val_accuracy: 0.9655 Epoch 168/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0529 - accuracy: 0.9826 - val_loss: 0.0861 - val_accuracy: 0.9655 Epoch 169/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0455 - accuracy: 0.9870 - val_loss: 0.0847 - val_accuracy: 0.9655 Epoch 170/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0349 - accuracy: 0.9870 - val_loss: 0.0863 - val_accuracy: 0.9828 Epoch 171/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0444 - accuracy: 0.9913 - val_loss: 0.0971 - val_accuracy: 0.9655 Epoch 172/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0446 - accuracy: 0.9870 - val_loss: 0.0896 - val_accuracy: 0.9828 Epoch 173/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0315 - accuracy: 0.9957 - val_loss: 0.0810 - val_accuracy: 0.9828 Epoch 174/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0471 - accuracy: 0.9783 - val_loss: 0.0794 - val_accuracy: 0.9828 Epoch 175/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0380 - accuracy: 0.9913 - val_loss: 0.0795 - val_accuracy: 0.9828 Epoch 176/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0395 - accuracy: 0.9826 - val_loss: 0.0844 - val_accuracy: 0.9828 Epoch 177/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0552 - accuracy: 0.9870 - val_loss: 0.0810 - val_accuracy: 0.9828 Epoch 178/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0351 - accuracy: 0.9957 - val_loss: 0.0801 - val_accuracy: 0.9828 Epoch 179/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0399 - accuracy: 0.9913 - val_loss: 0.0806 - val_accuracy: 0.9828 Epoch 180/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0323 - accuracy: 0.9913 - val_loss: 0.0808 - val_accuracy: 0.9828 Epoch 181/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0407 - accuracy: 0.9870 - val_loss: 0.0803 - val_accuracy: 0.9828 Epoch 182/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0469 - accuracy: 0.9870 - val_loss: 0.0782 - val_accuracy: 0.9828 Epoch 183/1000 2/2 [==============================] - 0s 55ms/step - loss: 0.0402 - accuracy: 0.9913 - val_loss: 0.0764 - val_accuracy: 0.9828 Epoch 184/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0429 - accuracy: 0.9870 - val_loss: 0.0749 - val_accuracy: 0.9828 Epoch 185/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0333 - accuracy: 0.9870 - val_loss: 0.0781 - val_accuracy: 0.9828 Epoch 186/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0408 - accuracy: 0.9913 - val_loss: 0.0790 - val_accuracy: 0.9828 Epoch 187/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0295 - accuracy: 0.9957 - val_loss: 0.0789 - val_accuracy: 0.9828 Epoch 188/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0410 - accuracy: 0.9870 - val_loss: 0.0744 - val_accuracy: 0.9828 Epoch 189/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0523 - accuracy: 0.9783 - val_loss: 0.0733 - val_accuracy: 0.9828 Epoch 190/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0309 - accuracy: 0.9913 - val_loss: 0.1234 - val_accuracy: 0.9483 Epoch 191/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0456 - accuracy: 0.9870 - val_loss: 0.1291 - val_accuracy: 0.9655 Epoch 192/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0435 - accuracy: 0.9826 - val_loss: 0.0732 - val_accuracy: 0.9828 Epoch 193/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0462 - accuracy: 0.9826 - val_loss: 0.0781 - val_accuracy: 0.9655 Epoch 194/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0485 - accuracy: 0.9913 - val_loss: 0.0738 - val_accuracy: 0.9828 Epoch 195/1000 2/2 [==============================] - 0s 60ms/step - loss: 0.0351 - accuracy: 0.9913 - val_loss: 0.0737 - val_accuracy: 0.9828 Epoch 196/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0448 - accuracy: 0.9783 - val_loss: 0.0762 - val_accuracy: 0.9828 Epoch 197/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0397 - accuracy: 0.9826 - val_loss: 0.0720 - val_accuracy: 0.9828 Epoch 198/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0337 - accuracy: 0.9913 - val_loss: 0.0786 - val_accuracy: 0.9655 Epoch 199/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0329 - accuracy: 0.9913 - val_loss: 0.0781 - val_accuracy: 0.9655 Epoch 200/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0372 - accuracy: 0.9957 - val_loss: 0.0738 - val_accuracy: 0.9828 Epoch 201/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0327 - accuracy: 0.9826 - val_loss: 0.0861 - val_accuracy: 0.9828 Epoch 202/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0432 - accuracy: 0.9826 - val_loss: 0.0724 - val_accuracy: 0.9828 Epoch 203/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0259 - accuracy: 0.9957 - val_loss: 0.0803 - val_accuracy: 0.9655 Epoch 204/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0519 - accuracy: 0.9783 - val_loss: 0.0703 - val_accuracy: 0.9828 Epoch 205/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0347 - accuracy: 0.9870 - val_loss: 0.0844 - val_accuracy: 0.9828 Epoch 206/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0310 - accuracy: 0.9870 - val_loss: 0.0903 - val_accuracy: 0.9828 Epoch 207/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0401 - accuracy: 0.9826 - val_loss: 0.0717 - val_accuracy: 0.9828 Epoch 208/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0328 - accuracy: 0.9870 - val_loss: 0.0712 - val_accuracy: 0.9828 Epoch 209/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0301 - accuracy: 0.9913 - val_loss: 0.0761 - val_accuracy: 0.9828 Epoch 210/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0218 - accuracy: 0.9957 - val_loss: 0.0866 - val_accuracy: 0.9828 Epoch 211/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0343 - accuracy: 0.9870 - val_loss: 0.0783 - val_accuracy: 0.9828 Epoch 212/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0329 - accuracy: 0.9913 - val_loss: 0.0692 - val_accuracy: 0.9828 Epoch 213/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0299 - accuracy: 0.9913 - val_loss: 0.0689 - val_accuracy: 0.9828 Epoch 214/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0450 - accuracy: 0.9739 - val_loss: 0.0720 - val_accuracy: 0.9828 Epoch 215/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0282 - accuracy: 0.9913 - val_loss: 0.0696 - val_accuracy: 0.9828 Epoch 216/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0334 - accuracy: 0.9870 - val_loss: 0.0858 - val_accuracy: 0.9828 Epoch 217/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0238 - accuracy: 1.0000 - val_loss: 0.0873 - val_accuracy: 0.9828 Epoch 218/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0312 - accuracy: 0.9870 - val_loss: 0.0710 - val_accuracy: 0.9828 Epoch 219/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0387 - accuracy: 0.9870 - val_loss: 0.0720 - val_accuracy: 0.9655 Epoch 220/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0286 - accuracy: 0.9957 - val_loss: 0.0691 - val_accuracy: 0.9828 Epoch 221/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0313 - accuracy: 0.9913 - val_loss: 0.0695 - val_accuracy: 0.9828 Epoch 222/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0258 - accuracy: 0.9957 - val_loss: 0.0780 - val_accuracy: 0.9828 Epoch 223/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0244 - accuracy: 0.9957 - val_loss: 0.0676 - val_accuracy: 0.9828 Epoch 224/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0338 - accuracy: 0.9913 - val_loss: 0.0665 - val_accuracy: 0.9828 Epoch 225/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0238 - accuracy: 0.9913 - val_loss: 0.0668 - val_accuracy: 0.9828 Epoch 226/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0375 - accuracy: 0.9826 - val_loss: 0.0645 - val_accuracy: 0.9828 Epoch 227/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0245 - accuracy: 0.9913 - val_loss: 0.0648 - val_accuracy: 0.9828 Epoch 228/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.0254 - accuracy: 0.9913 - val_loss: 0.0641 - val_accuracy: 0.9828 Epoch 229/1000 2/2 [==============================] - 0s 52ms/step - loss: 0.0382 - accuracy: 0.9826 - val_loss: 0.0634 - val_accuracy: 0.9828 Epoch 230/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.0218 - accuracy: 0.9913 - val_loss: 0.0631 - val_accuracy: 0.9828 Epoch 231/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0287 - accuracy: 0.9913 - val_loss: 0.0657 - val_accuracy: 0.9828 Epoch 232/1000 2/2 [==============================] - 0s 57ms/step - loss: 0.0297 - accuracy: 0.9913 - val_loss: 0.0664 - val_accuracy: 0.9828 Epoch 233/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0243 - accuracy: 0.9913 - val_loss: 0.0625 - val_accuracy: 0.9828 Epoch 234/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0301 - accuracy: 0.9913 - val_loss: 0.0689 - val_accuracy: 0.9828 Epoch 235/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0384 - accuracy: 0.9870 - val_loss: 0.0649 - val_accuracy: 0.9828 Epoch 236/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0494 - accuracy: 0.9826 - val_loss: 0.0620 - val_accuracy: 0.9828 Epoch 237/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0226 - accuracy: 1.0000 - val_loss: 0.0733 - val_accuracy: 0.9828 Epoch 238/1000 2/2 [==============================] - 0s 51ms/step - loss: 0.0279 - accuracy: 0.9957 - val_loss: 0.0677 - val_accuracy: 0.9828 Epoch 239/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0308 - accuracy: 0.9957 - val_loss: 0.0664 - val_accuracy: 0.9828 Epoch 240/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0328 - accuracy: 0.9913 - val_loss: 0.0702 - val_accuracy: 0.9828 Epoch 241/1000 2/2 [==============================] - 0s 50ms/step - loss: 0.0266 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9828 Epoch 242/1000 2/2 [==============================] - 0s 52ms/step - loss: 0.0229 - accuracy: 0.9913 - val_loss: 0.0968 - val_accuracy: 0.9655 Epoch 243/1000 2/2 [==============================] - 0s 51ms/step - loss: 0.0373 - accuracy: 0.9870 - val_loss: 0.0830 - val_accuracy: 0.9655 Epoch 244/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0326 - accuracy: 0.9913 - val_loss: 0.0710 - val_accuracy: 0.9655 Epoch 245/1000 2/2 [==============================] - 0s 60ms/step - loss: 0.0408 - accuracy: 0.9826 - val_loss: 0.0676 - val_accuracy: 0.9828 Epoch 246/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0244 - accuracy: 0.9870 - val_loss: 0.1112 - val_accuracy: 0.9483 Epoch 247/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0281 - accuracy: 0.9913 - val_loss: 0.1257 - val_accuracy: 0.9483 Epoch 248/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0257 - accuracy: 0.9957 - val_loss: 0.0629 - val_accuracy: 0.9828 Epoch 249/1000 2/2 [==============================] - 0s 52ms/step - loss: 0.0379 - accuracy: 0.9870 - val_loss: 0.0627 - val_accuracy: 0.9828 Epoch 250/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.0269 - accuracy: 0.9957 - val_loss: 0.0614 - val_accuracy: 0.9828 Epoch 251/1000 2/2 [==============================] - 0s 65ms/step - loss: 0.0284 - accuracy: 0.9913 - val_loss: 0.0613 - val_accuracy: 0.9828 Epoch 252/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0144 - accuracy: 1.0000 - val_loss: 0.0611 - val_accuracy: 0.9828 Epoch 253/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0194 - accuracy: 1.0000 - val_loss: 0.0626 - val_accuracy: 0.9828 Epoch 254/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0386 - accuracy: 0.9870 - val_loss: 0.0691 - val_accuracy: 0.9828 Epoch 255/1000 2/2 [==============================] - 0s 62ms/step - loss: 0.0227 - accuracy: 0.9913 - val_loss: 0.0800 - val_accuracy: 0.9828 Epoch 256/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0183 - accuracy: 0.9913 - val_loss: 0.0817 - val_accuracy: 0.9828 Epoch 257/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0264 - accuracy: 0.9913 - val_loss: 0.0844 - val_accuracy: 0.9655 Epoch 258/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0315 - accuracy: 0.9913 - val_loss: 0.0718 - val_accuracy: 0.9655 Epoch 259/1000 2/2 [==============================] - 0s 50ms/step - loss: 0.0265 - accuracy: 0.9870 - val_loss: 0.0668 - val_accuracy: 0.9828 Epoch 260/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.0192 - accuracy: 0.9913 - val_loss: 0.0655 - val_accuracy: 0.9828 Epoch 261/1000 2/2 [==============================] - 0s 63ms/step - loss: 0.0366 - accuracy: 0.9913 - val_loss: 0.0615 - val_accuracy: 0.9828 Epoch 262/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0163 - accuracy: 0.9957 - val_loss: 0.0605 - val_accuracy: 0.9828 Epoch 263/1000 2/2 [==============================] - 0s 48ms/step - loss: 0.0251 - accuracy: 0.9913 - val_loss: 0.0588 - val_accuracy: 0.9828 Epoch 264/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0253 - accuracy: 0.9913 - val_loss: 0.0650 - val_accuracy: 0.9828 Epoch 265/1000 2/2 [==============================] - 0s 62ms/step - loss: 0.0324 - accuracy: 0.9870 - val_loss: 0.0661 - val_accuracy: 0.9828 Epoch 266/1000 2/2 [==============================] - 0s 60ms/step - loss: 0.0341 - accuracy: 0.9913 - val_loss: 0.0594 - val_accuracy: 0.9828 Epoch 267/1000 2/2 [==============================] - 0s 65ms/step - loss: 0.0266 - accuracy: 0.9913 - val_loss: 0.0731 - val_accuracy: 0.9655 Epoch 268/1000 2/2 [==============================] - 0s 62ms/step - loss: 0.0395 - accuracy: 0.9870 - val_loss: 0.0594 - val_accuracy: 0.9828 Epoch 269/1000 2/2 [==============================] - 0s 54ms/step - loss: 0.0171 - accuracy: 0.9957 - val_loss: 0.0668 - val_accuracy: 0.9828 Epoch 270/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0217 - accuracy: 0.9957 - val_loss: 0.0698 - val_accuracy: 0.9828 Epoch 271/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0283 - accuracy: 0.9913 - val_loss: 0.0683 - val_accuracy: 0.9828 Epoch 272/1000 2/2 [==============================] - 0s 52ms/step - loss: 0.0339 - accuracy: 0.9870 - val_loss: 0.0633 - val_accuracy: 0.9828 Epoch 273/1000 2/2 [==============================] - 0s 50ms/step - loss: 0.0172 - accuracy: 0.9957 - val_loss: 0.0606 - val_accuracy: 0.9828 Epoch 274/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0219 - accuracy: 0.9913 - val_loss: 0.0654 - val_accuracy: 0.9828 Epoch 275/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0284 - accuracy: 0.9870 - val_loss: 0.0623 - val_accuracy: 0.9828 Epoch 276/1000 2/2 [==============================] - 0s 55ms/step - loss: 0.0145 - accuracy: 0.9957 - val_loss: 0.0608 - val_accuracy: 0.9828 Epoch 277/1000 2/2 [==============================] - 0s 60ms/step - loss: 0.0196 - accuracy: 0.9913 - val_loss: 0.0575 - val_accuracy: 0.9828 Epoch 278/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0165 - accuracy: 0.9957 - val_loss: 0.0717 - val_accuracy: 0.9828 Epoch 279/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0290 - accuracy: 0.9870 - val_loss: 0.0576 - val_accuracy: 0.9828 Epoch 280/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0247 - accuracy: 0.9826 - val_loss: 0.0607 - val_accuracy: 0.9828 Epoch 281/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0200 - accuracy: 0.9957 - val_loss: 0.0573 - val_accuracy: 0.9828 Epoch 282/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0181 - accuracy: 0.9957 - val_loss: 0.0592 - val_accuracy: 0.9828 Epoch 283/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0146 - accuracy: 0.9957 - val_loss: 0.0587 - val_accuracy: 0.9828 Epoch 284/1000 2/2 [==============================] - 0s 45ms/step - loss: 0.0118 - accuracy: 1.0000 - val_loss: 0.0572 - val_accuracy: 0.9828 Epoch 285/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0164 - accuracy: 0.9957 - val_loss: 0.0625 - val_accuracy: 0.9828 Epoch 286/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0172 - accuracy: 0.9913 - val_loss: 0.0618 - val_accuracy: 0.9828 Epoch 287/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0132 - accuracy: 1.0000 - val_loss: 0.0595 - val_accuracy: 0.9828 Epoch 288/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0139 - accuracy: 0.9957 - val_loss: 0.0632 - val_accuracy: 0.9828 Epoch 289/1000 2/2 [==============================] - 0s 51ms/step - loss: 0.0359 - accuracy: 0.9870 - val_loss: 0.0674 - val_accuracy: 0.9828 Epoch 290/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0389 - accuracy: 0.9870 - val_loss: 0.0575 - val_accuracy: 0.9828 Epoch 291/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0409 - accuracy: 0.9870 - val_loss: 0.0925 - val_accuracy: 0.9655 Epoch 292/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0230 - accuracy: 0.9957 - val_loss: 0.0623 - val_accuracy: 0.9828 Epoch 293/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0374 - accuracy: 0.9870 - val_loss: 0.0642 - val_accuracy: 0.9828 Epoch 294/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0204 - accuracy: 0.9913 - val_loss: 0.0906 - val_accuracy: 0.9655 Epoch 295/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0288 - accuracy: 0.9957 - val_loss: 0.0918 - val_accuracy: 0.9655 Epoch 296/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0207 - accuracy: 0.9957 - val_loss: 0.0590 - val_accuracy: 0.9828 Epoch 297/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0258 - accuracy: 0.9913 - val_loss: 0.0607 - val_accuracy: 0.9828 Epoch 298/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0156 - accuracy: 0.9957 - val_loss: 0.0643 - val_accuracy: 0.9828 Epoch 299/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0320 - accuracy: 0.9826 - val_loss: 0.0663 - val_accuracy: 0.9828 Epoch 300/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0249 - accuracy: 0.9913 - val_loss: 0.0676 - val_accuracy: 0.9828 Epoch 301/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0201 - accuracy: 0.9870 - val_loss: 0.0567 - val_accuracy: 0.9828 Epoch 302/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0205 - accuracy: 0.9913 - val_loss: 0.1184 - val_accuracy: 0.9483 Epoch 303/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0187 - accuracy: 1.0000 - val_loss: 0.1484 - val_accuracy: 0.9310 Epoch 304/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0229 - accuracy: 0.9913 - val_loss: 0.0573 - val_accuracy: 0.9828 Epoch 305/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0245 - accuracy: 0.9826 - val_loss: 0.0611 - val_accuracy: 0.9828 Epoch 306/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0246 - accuracy: 0.9913 - val_loss: 0.0680 - val_accuracy: 0.9828 Epoch 307/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0246 - accuracy: 0.9913 - val_loss: 0.0606 - val_accuracy: 0.9828 Epoch 308/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0305 - accuracy: 0.9826 - val_loss: 0.0704 - val_accuracy: 0.9828 Epoch 309/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0257 - accuracy: 0.9913 - val_loss: 0.0609 - val_accuracy: 0.9828 Epoch 310/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0217 - accuracy: 0.9913 - val_loss: 0.0994 - val_accuracy: 0.9828 Epoch 311/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0311 - accuracy: 1.0000 - val_loss: 0.0584 - val_accuracy: 0.9828 Epoch 312/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0264 - accuracy: 0.9913 - val_loss: 0.0657 - val_accuracy: 0.9828 Epoch 313/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0300 - accuracy: 0.9913 - val_loss: 0.0577 - val_accuracy: 0.9828 Epoch 314/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0172 - accuracy: 0.9957 - val_loss: 0.1031 - val_accuracy: 0.9310 Epoch 315/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0417 - accuracy: 0.9870 - val_loss: 0.0536 - val_accuracy: 0.9828 Epoch 316/1000 2/2 [==============================] - 0s 49ms/step - loss: 0.0153 - accuracy: 0.9957 - val_loss: 0.0772 - val_accuracy: 0.9655 Epoch 317/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0387 - accuracy: 0.9870 - val_loss: 0.0552 - val_accuracy: 0.9828 Epoch 318/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0097 - accuracy: 1.0000 - val_loss: 0.1705 - val_accuracy: 0.9138 Epoch 319/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0571 - accuracy: 0.9739 - val_loss: 0.0551 - val_accuracy: 0.9828 Epoch 320/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0272 - accuracy: 0.9826 - val_loss: 0.1014 - val_accuracy: 0.9655 Epoch 321/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0498 - accuracy: 0.9870 - val_loss: 0.0574 - val_accuracy: 0.9828 Epoch 322/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0298 - accuracy: 0.9870 - val_loss: 0.0710 - val_accuracy: 0.9828 Epoch 323/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0136 - accuracy: 1.0000 - val_loss: 0.0626 - val_accuracy: 0.9828 Epoch 324/1000 2/2 [==============================] - 0s 44ms/step - loss: 0.0160 - accuracy: 0.9957 - val_loss: 0.0713 - val_accuracy: 0.9828 Epoch 325/1000 2/2 [==============================] - 0s 53ms/step - loss: 0.0167 - accuracy: 0.9913 - val_loss: 0.0616 - val_accuracy: 0.9828 Epoch 326/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0133 - accuracy: 1.0000 - val_loss: 0.0603 - val_accuracy: 0.9828 Epoch 327/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0215 - accuracy: 0.9957 - val_loss: 0.0611 - val_accuracy: 0.9828 Epoch 328/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0116 - accuracy: 1.0000 - val_loss: 0.0618 - val_accuracy: 0.9828 Epoch 329/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0216 - accuracy: 0.9957 - val_loss: 0.0596 - val_accuracy: 0.9828 Epoch 330/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0250 - accuracy: 0.9957 - val_loss: 0.0530 - val_accuracy: 0.9828 Epoch 331/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0147 - accuracy: 1.0000 - val_loss: 0.0549 - val_accuracy: 0.9828 Epoch 332/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0125 - accuracy: 0.9957 - val_loss: 0.0539 - val_accuracy: 0.9828 Epoch 333/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0188 - accuracy: 0.9913 - val_loss: 0.0556 - val_accuracy: 0.9828 Epoch 334/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0132 - accuracy: 1.0000 - val_loss: 0.0559 - val_accuracy: 0.9828 Epoch 335/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0147 - accuracy: 0.9957 - val_loss: 0.0645 - val_accuracy: 0.9828 Epoch 336/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0167 - accuracy: 1.0000 - val_loss: 0.0603 - val_accuracy: 0.9828 Epoch 337/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0209 - accuracy: 0.9913 - val_loss: 0.0696 - val_accuracy: 0.9828 Epoch 338/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0180 - accuracy: 0.9957 - val_loss: 0.0786 - val_accuracy: 0.9655 Epoch 339/1000 2/2 [==============================] - 0s 59ms/step - loss: 0.0236 - accuracy: 0.9870 - val_loss: 0.0584 - val_accuracy: 0.9828 Epoch 340/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0242 - accuracy: 0.9957 - val_loss: 0.0620 - val_accuracy: 0.9828 Epoch 341/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0125 - accuracy: 1.0000 - val_loss: 0.0575 - val_accuracy: 0.9828 Epoch 342/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0146 - accuracy: 1.0000 - val_loss: 0.0595 - val_accuracy: 0.9828 Epoch 343/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0139 - accuracy: 1.0000 - val_loss: 0.0531 - val_accuracy: 0.9828 Epoch 344/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0264 - accuracy: 0.9913 - val_loss: 0.0531 - val_accuracy: 0.9828 Epoch 345/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0168 - accuracy: 0.9957 - val_loss: 0.0518 - val_accuracy: 0.9828 Epoch 346/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0150 - accuracy: 0.9957 - val_loss: 0.0566 - val_accuracy: 0.9828 Epoch 347/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0108 - accuracy: 1.0000 - val_loss: 0.0589 - val_accuracy: 0.9828 Epoch 348/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0135 - accuracy: 1.0000 - val_loss: 0.0588 - val_accuracy: 0.9828 Epoch 349/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0133 - accuracy: 1.0000 - val_loss: 0.0587 - val_accuracy: 0.9828 Epoch 350/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0125 - accuracy: 1.0000 - val_loss: 0.0619 - val_accuracy: 0.9828 Epoch 351/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0141 - accuracy: 0.9957 - val_loss: 0.0640 - val_accuracy: 0.9828 Epoch 352/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0119 - accuracy: 1.0000 - val_loss: 0.0668 - val_accuracy: 0.9828 Epoch 353/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0145 - accuracy: 0.9957 - val_loss: 0.0588 - val_accuracy: 0.9828 Epoch 354/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0254 - accuracy: 0.9913 - val_loss: 0.0556 - val_accuracy: 0.9828 Epoch 355/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.0664 - val_accuracy: 0.9828 Epoch 356/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0136 - accuracy: 0.9957 - val_loss: 0.0633 - val_accuracy: 0.9828 Epoch 357/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0117 - accuracy: 1.0000 - val_loss: 0.0586 - val_accuracy: 0.9828 Epoch 358/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0098 - accuracy: 1.0000 - val_loss: 0.1142 - val_accuracy: 0.9483 Epoch 359/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0161 - accuracy: 1.0000 - val_loss: 0.1588 - val_accuracy: 0.9310 Epoch 360/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0347 - accuracy: 0.9957 - val_loss: 0.0591 - val_accuracy: 0.9828 Epoch 361/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0180 - accuracy: 0.9957 - val_loss: 0.0598 - val_accuracy: 0.9828 Epoch 362/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0095 - accuracy: 1.0000 - val_loss: 0.0535 - val_accuracy: 0.9828 Epoch 363/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0156 - accuracy: 0.9957 - val_loss: 0.0510 - val_accuracy: 0.9828 Epoch 364/1000 2/2 [==============================] - 0s 54ms/step - loss: 0.0090 - accuracy: 1.0000 - val_loss: 0.0515 - val_accuracy: 0.9828 Epoch 365/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0525 - val_accuracy: 0.9828 Epoch 366/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0109 - accuracy: 0.9957 - val_loss: 0.0574 - val_accuracy: 0.9828 Epoch 367/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0187 - accuracy: 0.9957 - val_loss: 0.0573 - val_accuracy: 0.9828 Epoch 368/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0066 - accuracy: 1.0000 - val_loss: 0.0525 - val_accuracy: 0.9828 Epoch 369/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0096 - accuracy: 1.0000 - val_loss: 0.0522 - val_accuracy: 0.9828 Epoch 370/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0563 - val_accuracy: 0.9828 Epoch 371/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0182 - accuracy: 0.9957 - val_loss: 0.0569 - val_accuracy: 0.9828 Epoch 372/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0137 - accuracy: 0.9957 - val_loss: 0.0592 - val_accuracy: 0.9828 Epoch 373/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0068 - accuracy: 1.0000 - val_loss: 0.0595 - val_accuracy: 0.9828 Epoch 374/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.0621 - val_accuracy: 0.9828 Epoch 375/1000 2/2 [==============================] - 0s 61ms/step - loss: 0.0134 - accuracy: 0.9957 - val_loss: 0.0627 - val_accuracy: 0.9828 Epoch 376/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0142 - accuracy: 1.0000 - val_loss: 0.0544 - val_accuracy: 0.9828 Epoch 377/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0560 - val_accuracy: 0.9828 Epoch 378/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0185 - accuracy: 0.9913 - val_loss: 0.0558 - val_accuracy: 0.9828 Epoch 379/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0102 - accuracy: 1.0000 - val_loss: 0.0694 - val_accuracy: 0.9828 Epoch 380/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0117 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9828 Epoch 381/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0047 - accuracy: 1.0000 - val_loss: 0.0549 - val_accuracy: 0.9828 Epoch 382/1000 2/2 [==============================] - 0s 35ms/step - loss: 0.0048 - accuracy: 1.0000 - val_loss: 0.0508 - val_accuracy: 0.9828 Epoch 383/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0109 - accuracy: 0.9957 - val_loss: 0.0506 - val_accuracy: 0.9828 Epoch 384/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0223 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9828 Epoch 385/1000 2/2 [==============================] - 0s 47ms/step - loss: 0.0234 - accuracy: 0.9913 - val_loss: 0.0513 - val_accuracy: 0.9828 Epoch 386/1000 2/2 [==============================] - 0s 46ms/step - loss: 0.0112 - accuracy: 0.9957 - val_loss: 0.0523 - val_accuracy: 0.9828 Epoch 387/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0072 - accuracy: 1.0000 - val_loss: 0.0521 - val_accuracy: 0.9828 Epoch 388/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0114 - accuracy: 0.9957 - val_loss: 0.0646 - val_accuracy: 0.9828 Epoch 389/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0131 - accuracy: 0.9957 - val_loss: 0.0646 - val_accuracy: 0.9828 Epoch 390/1000 2/2 [==============================] - 0s 36ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.0568 - val_accuracy: 0.9828 Epoch 391/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0102 - accuracy: 1.0000 - val_loss: 0.0570 - val_accuracy: 0.9828 Epoch 392/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0182 - accuracy: 0.9957 - val_loss: 0.0834 - val_accuracy: 0.9655 Epoch 393/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0210 - accuracy: 0.9913 - val_loss: 0.0774 - val_accuracy: 0.9828 Epoch 394/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0115 - accuracy: 0.9957 - val_loss: 0.0548 - val_accuracy: 0.9828 Epoch 395/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0146 - accuracy: 0.9957 - val_loss: 0.0902 - val_accuracy: 0.9483 Epoch 396/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0276 - accuracy: 0.9826 - val_loss: 0.0611 - val_accuracy: 0.9828 Epoch 397/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0111 - accuracy: 1.0000 - val_loss: 0.1135 - val_accuracy: 0.9655 Epoch 398/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0277 - accuracy: 0.9826 - val_loss: 0.0692 - val_accuracy: 0.9828 Epoch 399/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0137 - accuracy: 1.0000 - val_loss: 0.0556 - val_accuracy: 0.9828 Epoch 400/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0112 - accuracy: 1.0000 - val_loss: 0.0536 - val_accuracy: 0.9828 Epoch 401/1000 2/2 [==============================] - 0s 39ms/step - loss: 0.0164 - accuracy: 0.9957 - val_loss: 0.0607 - val_accuracy: 0.9828 Epoch 402/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.0632 - val_accuracy: 0.9828 Epoch 403/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0064 - accuracy: 1.0000 - val_loss: 0.0595 - val_accuracy: 0.9828 Epoch 404/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0077 - accuracy: 1.0000 - val_loss: 0.0577 - val_accuracy: 0.9828 Epoch 405/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0621 - val_accuracy: 0.9828 Epoch 406/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0078 - accuracy: 1.0000 - val_loss: 0.0726 - val_accuracy: 0.9655 Epoch 407/1000 2/2 [==============================] - 0s 40ms/step - loss: 0.0087 - accuracy: 1.0000 - val_loss: 0.0613 - val_accuracy: 0.9828 Epoch 408/1000 2/2 [==============================] - 0s 38ms/step - loss: 0.0037 - accuracy: 1.0000 - val_loss: 0.0638 - val_accuracy: 0.9828 Epoch 409/1000 2/2 [==============================] - 0s 42ms/step - loss: 0.0172 - accuracy: 0.9957 - val_loss: 0.0588 - val_accuracy: 0.9828 Epoch 410/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0105 - accuracy: 1.0000 - val_loss: 0.0816 - val_accuracy: 0.9655 Epoch 411/1000 2/2 [==============================] - 0s 37ms/step - loss: 0.0138 - accuracy: 0.9957 - val_loss: 0.0578 - val_accuracy: 0.9828 Epoch 412/1000 2/2 [==============================] - 0s 43ms/step - loss: 0.0115 - accuracy: 1.0000 - val_loss: 0.0677 - val_accuracy: 0.9828 Epoch 413/1000 2/2 [==============================] - 0s 41ms/step - loss: 0.0140 - accuracy: 0.9957 - val_loss: 0.0756 - val_accuracy: 0.9828
In [ ]:
#학습 진행사항을 plt로 출력 # hist3의 accuracy plt의 plot을 이용하여 출력 plt.plot(hist3.history['accuracy'], label='accuracy') plt.plot(hist3.history['loss'], label='loss') plt.plot(hist3.history['val_accuracy'], label='val_accuracy') plt.plot(hist3.history['val_loss'], label='val_loss') plt.ylim(0.0, 1.0) plt.legend(loc='upper left') plt.show()
In [ ]:
hist4 = model4.fit(train_sound2.reshape(-1,40,65,1), train_labels2, validation_data = (test_sound2.reshape((-1,40,65,1)), test_labels2), batch_size=128, epochs=3000, verbose=1)
스트리밍 출력 내용이 길어서 마지막 5000줄이 삭제되었습니다. 2/2 [==============================] - 0s 33ms/step - loss: 0.0497 - accuracy: 0.9957 - val_loss: 0.1189 - val_accuracy: 0.9310 Epoch 502/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0970 - accuracy: 0.9696 - val_loss: 0.1169 - val_accuracy: 0.9310 Epoch 503/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0817 - accuracy: 0.9696 - val_loss: 0.1158 - val_accuracy: 0.9310 Epoch 504/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0574 - accuracy: 0.9783 - val_loss: 0.1150 - val_accuracy: 0.9310 Epoch 505/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0391 - accuracy: 0.9826 - val_loss: 0.1141 - val_accuracy: 0.9310 Epoch 506/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0663 - accuracy: 0.9739 - val_loss: 0.1132 - val_accuracy: 0.9310 Epoch 507/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0539 - accuracy: 0.9870 - val_loss: 0.1126 - val_accuracy: 0.9310 Epoch 508/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0699 - accuracy: 0.9609 - val_loss: 0.1118 - val_accuracy: 0.9310 Epoch 509/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0739 - accuracy: 0.9696 - val_loss: 0.1111 - val_accuracy: 0.9483 Epoch 510/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0766 - accuracy: 0.9783 - val_loss: 0.1101 - val_accuracy: 0.9483 Epoch 511/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0448 - accuracy: 0.9957 - val_loss: 0.1094 - val_accuracy: 0.9483 Epoch 512/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0738 - accuracy: 0.9783 - val_loss: 0.1084 - val_accuracy: 0.9483 Epoch 513/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0671 - accuracy: 0.9826 - val_loss: 0.1072 - val_accuracy: 0.9483 Epoch 514/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0448 - accuracy: 0.9913 - val_loss: 0.1078 - val_accuracy: 0.9483 Epoch 515/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0711 - accuracy: 0.9739 - val_loss: 0.1108 - val_accuracy: 0.9483 Epoch 516/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0472 - accuracy: 0.9913 - val_loss: 0.1123 - val_accuracy: 0.9483 Epoch 517/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0410 - accuracy: 1.0000 - val_loss: 0.1124 - val_accuracy: 0.9483 Epoch 518/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0474 - accuracy: 0.9826 - val_loss: 0.1116 - val_accuracy: 0.9483 Epoch 519/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0604 - accuracy: 0.9826 - val_loss: 0.1094 - val_accuracy: 0.9483 Epoch 520/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0421 - accuracy: 0.9870 - val_loss: 0.1073 - val_accuracy: 0.9483 Epoch 521/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0509 - accuracy: 0.9826 - val_loss: 0.1059 - val_accuracy: 0.9483 Epoch 522/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0482 - accuracy: 0.9783 - val_loss: 0.1055 - val_accuracy: 0.9483 Epoch 523/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0725 - accuracy: 0.9783 - val_loss: 0.1062 - val_accuracy: 0.9483 Epoch 524/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0382 - accuracy: 0.9913 - val_loss: 0.1055 - val_accuracy: 0.9483 Epoch 525/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0202 - accuracy: 0.9957 - val_loss: 0.1049 - val_accuracy: 0.9483 Epoch 526/3000 2/2 [==============================] - 0s 29ms/step - loss: 0.0654 - accuracy: 0.9739 - val_loss: 0.1045 - val_accuracy: 0.9483 Epoch 527/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0566 - accuracy: 0.9783 - val_loss: 0.1040 - val_accuracy: 0.9483 Epoch 528/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0715 - accuracy: 0.9739 - val_loss: 0.1048 - val_accuracy: 0.9483 Epoch 529/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0620 - accuracy: 0.9783 - val_loss: 0.1045 - val_accuracy: 0.9483 Epoch 530/3000 2/2 [==============================] - 0s 45ms/step - loss: 0.0427 - accuracy: 0.9826 - val_loss: 0.1026 - val_accuracy: 0.9483 Epoch 531/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0656 - accuracy: 0.9783 - val_loss: 0.1020 - val_accuracy: 0.9483 Epoch 532/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0853 - accuracy: 0.9652 - val_loss: 0.1009 - val_accuracy: 0.9483 Epoch 533/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0508 - accuracy: 0.9739 - val_loss: 0.1002 - val_accuracy: 0.9483 Epoch 534/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0479 - accuracy: 0.9913 - val_loss: 0.1016 - val_accuracy: 0.9483 Epoch 535/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0338 - accuracy: 1.0000 - val_loss: 0.1037 - val_accuracy: 0.9483 Epoch 536/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0588 - accuracy: 0.9826 - val_loss: 0.1057 - val_accuracy: 0.9483 Epoch 537/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0623 - accuracy: 0.9870 - val_loss: 0.1065 - val_accuracy: 0.9483 Epoch 538/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0317 - accuracy: 0.9957 - val_loss: 0.1065 - val_accuracy: 0.9483 Epoch 539/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0417 - accuracy: 0.9913 - val_loss: 0.1072 - val_accuracy: 0.9483 Epoch 540/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0833 - accuracy: 0.9696 - val_loss: 0.1066 - val_accuracy: 0.9483 Epoch 541/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0495 - accuracy: 0.9870 - val_loss: 0.1066 - val_accuracy: 0.9483 Epoch 542/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0731 - accuracy: 0.9739 - val_loss: 0.1067 - val_accuracy: 0.9483 Epoch 543/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0828 - accuracy: 0.9826 - val_loss: 0.1058 - val_accuracy: 0.9483 Epoch 544/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0526 - accuracy: 0.9870 - val_loss: 0.1054 - val_accuracy: 0.9483 Epoch 545/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0523 - accuracy: 0.9783 - val_loss: 0.1054 - val_accuracy: 0.9483 Epoch 546/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0361 - accuracy: 0.9870 - val_loss: 0.1054 - val_accuracy: 0.9483 Epoch 547/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0957 - accuracy: 0.9739 - val_loss: 0.1049 - val_accuracy: 0.9483 Epoch 548/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0710 - accuracy: 0.9870 - val_loss: 0.1046 - val_accuracy: 0.9483 Epoch 549/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0295 - accuracy: 0.9957 - val_loss: 0.1041 - val_accuracy: 0.9483 Epoch 550/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0627 - accuracy: 0.9870 - val_loss: 0.1040 - val_accuracy: 0.9483 Epoch 551/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0414 - accuracy: 0.9870 - val_loss: 0.1046 - val_accuracy: 0.9483 Epoch 552/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0415 - accuracy: 0.9913 - val_loss: 0.1067 - val_accuracy: 0.9483 Epoch 553/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0528 - accuracy: 0.9826 - val_loss: 0.1095 - val_accuracy: 0.9310 Epoch 554/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0548 - accuracy: 0.9826 - val_loss: 0.1106 - val_accuracy: 0.9310 Epoch 555/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0480 - accuracy: 0.9826 - val_loss: 0.1109 - val_accuracy: 0.9310 Epoch 556/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0593 - accuracy: 0.9783 - val_loss: 0.1090 - val_accuracy: 0.9310 Epoch 557/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0825 - accuracy: 0.9652 - val_loss: 0.1082 - val_accuracy: 0.9483 Epoch 558/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0460 - accuracy: 0.9783 - val_loss: 0.1078 - val_accuracy: 0.9483 Epoch 559/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0536 - accuracy: 0.9826 - val_loss: 0.1075 - val_accuracy: 0.9483 Epoch 560/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0427 - accuracy: 0.9870 - val_loss: 0.1069 - val_accuracy: 0.9483 Epoch 561/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0599 - accuracy: 0.9826 - val_loss: 0.1069 - val_accuracy: 0.9483 Epoch 562/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0319 - accuracy: 0.9870 - val_loss: 0.1072 - val_accuracy: 0.9483 Epoch 563/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0635 - accuracy: 0.9870 - val_loss: 0.1079 - val_accuracy: 0.9483 Epoch 564/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0514 - accuracy: 0.9783 - val_loss: 0.1079 - val_accuracy: 0.9483 Epoch 565/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0525 - accuracy: 0.9783 - val_loss: 0.1073 - val_accuracy: 0.9310 Epoch 566/3000 2/2 [==============================] - 0s 53ms/step - loss: 0.0405 - accuracy: 0.9826 - val_loss: 0.1063 - val_accuracy: 0.9310 Epoch 567/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0440 - accuracy: 0.9783 - val_loss: 0.1070 - val_accuracy: 0.9483 Epoch 568/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0519 - accuracy: 0.9826 - val_loss: 0.1053 - val_accuracy: 0.9483 Epoch 569/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0530 - accuracy: 0.9783 - val_loss: 0.1039 - val_accuracy: 0.9483 Epoch 570/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0300 - accuracy: 0.9957 - val_loss: 0.1048 - val_accuracy: 0.9483 Epoch 571/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0269 - accuracy: 0.9957 - val_loss: 0.1058 - val_accuracy: 0.9483 Epoch 572/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0391 - accuracy: 0.9913 - val_loss: 0.1069 - val_accuracy: 0.9483 Epoch 573/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0574 - accuracy: 0.9783 - val_loss: 0.1089 - val_accuracy: 0.9483 Epoch 574/3000 2/2 [==============================] - 0s 56ms/step - loss: 0.0315 - accuracy: 0.9913 - val_loss: 0.1108 - val_accuracy: 0.9483 Epoch 575/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0401 - accuracy: 0.9826 - val_loss: 0.1119 - val_accuracy: 0.9483 Epoch 576/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0546 - accuracy: 0.9826 - val_loss: 0.1094 - val_accuracy: 0.9483 Epoch 577/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0878 - accuracy: 0.9696 - val_loss: 0.1072 - val_accuracy: 0.9310 Epoch 578/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0566 - accuracy: 0.9739 - val_loss: 0.1090 - val_accuracy: 0.9483 Epoch 579/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0459 - accuracy: 0.9870 - val_loss: 0.1093 - val_accuracy: 0.9483 Epoch 580/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0637 - accuracy: 0.9913 - val_loss: 0.1068 - val_accuracy: 0.9483 Epoch 581/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0886 - accuracy: 0.9696 - val_loss: 0.1012 - val_accuracy: 0.9483 Epoch 582/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0439 - accuracy: 0.9826 - val_loss: 0.0986 - val_accuracy: 0.9483 Epoch 583/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0291 - accuracy: 1.0000 - val_loss: 0.0988 - val_accuracy: 0.9483 Epoch 584/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0343 - accuracy: 0.9913 - val_loss: 0.0992 - val_accuracy: 0.9655 Epoch 585/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0346 - accuracy: 0.9913 - val_loss: 0.0977 - val_accuracy: 0.9655 Epoch 586/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0631 - accuracy: 0.9826 - val_loss: 0.0944 - val_accuracy: 0.9483 Epoch 587/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0419 - accuracy: 0.9913 - val_loss: 0.0934 - val_accuracy: 0.9483 Epoch 588/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0404 - accuracy: 0.9870 - val_loss: 0.0944 - val_accuracy: 0.9483 Epoch 589/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0625 - accuracy: 0.9652 - val_loss: 0.0983 - val_accuracy: 0.9483 Epoch 590/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0293 - accuracy: 0.9913 - val_loss: 0.1015 - val_accuracy: 0.9483 Epoch 591/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0659 - accuracy: 0.9696 - val_loss: 0.1042 - val_accuracy: 0.9483 Epoch 592/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0363 - accuracy: 0.9870 - val_loss: 0.1017 - val_accuracy: 0.9483 Epoch 593/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0339 - accuracy: 0.9913 - val_loss: 0.0956 - val_accuracy: 0.9483 Epoch 594/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0526 - accuracy: 0.9826 - val_loss: 0.0937 - val_accuracy: 0.9483 Epoch 595/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0763 - accuracy: 0.9739 - val_loss: 0.0940 - val_accuracy: 0.9483 Epoch 596/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0343 - accuracy: 0.9870 - val_loss: 0.0946 - val_accuracy: 0.9483 Epoch 597/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0230 - accuracy: 0.9957 - val_loss: 0.0953 - val_accuracy: 0.9483 Epoch 598/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0546 - accuracy: 0.9826 - val_loss: 0.0956 - val_accuracy: 0.9483 Epoch 599/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0219 - accuracy: 0.9957 - val_loss: 0.0965 - val_accuracy: 0.9483 Epoch 600/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0531 - accuracy: 0.9826 - val_loss: 0.0968 - val_accuracy: 0.9483 Epoch 601/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0421 - accuracy: 0.9826 - val_loss: 0.0973 - val_accuracy: 0.9483 Epoch 602/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0455 - accuracy: 0.9870 - val_loss: 0.0983 - val_accuracy: 0.9483 Epoch 603/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0257 - accuracy: 0.9957 - val_loss: 0.0997 - val_accuracy: 0.9483 Epoch 604/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0268 - accuracy: 0.9957 - val_loss: 0.1014 - val_accuracy: 0.9483 Epoch 605/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0558 - accuracy: 0.9826 - val_loss: 0.1026 - val_accuracy: 0.9483 Epoch 606/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0571 - accuracy: 0.9826 - val_loss: 0.1022 - val_accuracy: 0.9483 Epoch 607/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0365 - accuracy: 0.9870 - val_loss: 0.1028 - val_accuracy: 0.9483 Epoch 608/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0349 - accuracy: 0.9913 - val_loss: 0.1012 - val_accuracy: 0.9483 Epoch 609/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0300 - accuracy: 0.9957 - val_loss: 0.0990 - val_accuracy: 0.9483 Epoch 610/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0375 - accuracy: 0.9870 - val_loss: 0.0990 - val_accuracy: 0.9483 Epoch 611/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0370 - accuracy: 0.9870 - val_loss: 0.0988 - val_accuracy: 0.9655 Epoch 612/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0285 - accuracy: 0.9913 - val_loss: 0.0971 - val_accuracy: 0.9655 Epoch 613/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0265 - accuracy: 1.0000 - val_loss: 0.0956 - val_accuracy: 0.9655 Epoch 614/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0155 - accuracy: 1.0000 - val_loss: 0.0948 - val_accuracy: 0.9655 Epoch 615/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0354 - accuracy: 0.9913 - val_loss: 0.0954 - val_accuracy: 0.9655 Epoch 616/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0671 - accuracy: 0.9826 - val_loss: 0.0940 - val_accuracy: 0.9655 Epoch 617/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0323 - accuracy: 0.9913 - val_loss: 0.0930 - val_accuracy: 0.9483 Epoch 618/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0412 - accuracy: 0.9913 - val_loss: 0.0919 - val_accuracy: 0.9483 Epoch 619/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0421 - accuracy: 0.9957 - val_loss: 0.0909 - val_accuracy: 0.9483 Epoch 620/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0351 - accuracy: 0.9913 - val_loss: 0.0901 - val_accuracy: 0.9483 Epoch 621/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0519 - accuracy: 0.9826 - val_loss: 0.0904 - val_accuracy: 0.9483 Epoch 622/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0424 - accuracy: 0.9826 - val_loss: 0.0913 - val_accuracy: 0.9483 Epoch 623/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0284 - accuracy: 0.9957 - val_loss: 0.0931 - val_accuracy: 0.9483 Epoch 624/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0271 - accuracy: 0.9957 - val_loss: 0.0948 - val_accuracy: 0.9483 Epoch 625/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0392 - accuracy: 0.9870 - val_loss: 0.0938 - val_accuracy: 0.9483 Epoch 626/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0819 - accuracy: 0.9696 - val_loss: 0.0921 - val_accuracy: 0.9483 Epoch 627/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0231 - accuracy: 0.9913 - val_loss: 0.0912 - val_accuracy: 0.9483 Epoch 628/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0613 - accuracy: 0.9826 - val_loss: 0.0912 - val_accuracy: 0.9483 Epoch 629/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0332 - accuracy: 0.9913 - val_loss: 0.0914 - val_accuracy: 0.9483 Epoch 630/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0230 - accuracy: 1.0000 - val_loss: 0.0915 - val_accuracy: 0.9483 Epoch 631/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0329 - accuracy: 0.9913 - val_loss: 0.0916 - val_accuracy: 0.9483 Epoch 632/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0278 - accuracy: 0.9957 - val_loss: 0.0917 - val_accuracy: 0.9483 Epoch 633/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0393 - accuracy: 0.9826 - val_loss: 0.0912 - val_accuracy: 0.9483 Epoch 634/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0231 - accuracy: 0.9913 - val_loss: 0.0914 - val_accuracy: 0.9483 Epoch 635/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0218 - accuracy: 0.9957 - val_loss: 0.0925 - val_accuracy: 0.9483 Epoch 636/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0411 - accuracy: 0.9783 - val_loss: 0.0931 - val_accuracy: 0.9483 Epoch 637/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0507 - accuracy: 0.9870 - val_loss: 0.0903 - val_accuracy: 0.9483 Epoch 638/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0367 - accuracy: 0.9957 - val_loss: 0.0881 - val_accuracy: 0.9483 Epoch 639/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0281 - accuracy: 0.9957 - val_loss: 0.0875 - val_accuracy: 0.9483 Epoch 640/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0399 - accuracy: 0.9913 - val_loss: 0.0875 - val_accuracy: 0.9483 Epoch 641/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0761 - accuracy: 0.9783 - val_loss: 0.0866 - val_accuracy: 0.9483 Epoch 642/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0236 - accuracy: 0.9957 - val_loss: 0.0865 - val_accuracy: 0.9483 Epoch 643/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0339 - accuracy: 0.9870 - val_loss: 0.0871 - val_accuracy: 0.9483 Epoch 644/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0263 - accuracy: 0.9957 - val_loss: 0.0868 - val_accuracy: 0.9483 Epoch 645/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0128 - accuracy: 1.0000 - val_loss: 0.0862 - val_accuracy: 0.9483 Epoch 646/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0491 - accuracy: 0.9826 - val_loss: 0.0855 - val_accuracy: 0.9483 Epoch 647/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0241 - accuracy: 0.9957 - val_loss: 0.0850 - val_accuracy: 0.9483 Epoch 648/3000 2/2 [==============================] - 0s 29ms/step - loss: 0.0456 - accuracy: 0.9826 - val_loss: 0.0851 - val_accuracy: 0.9483 Epoch 649/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0359 - accuracy: 0.9913 - val_loss: 0.0859 - val_accuracy: 0.9483 Epoch 650/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0397 - accuracy: 0.9826 - val_loss: 0.0875 - val_accuracy: 0.9483 Epoch 651/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0165 - accuracy: 0.9957 - val_loss: 0.0897 - val_accuracy: 0.9483 Epoch 652/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0549 - accuracy: 0.9870 - val_loss: 0.0921 - val_accuracy: 0.9483 Epoch 653/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0188 - accuracy: 0.9957 - val_loss: 0.0936 - val_accuracy: 0.9483 Epoch 654/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0464 - accuracy: 0.9870 - val_loss: 0.0934 - val_accuracy: 0.9483 Epoch 655/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0511 - accuracy: 0.9739 - val_loss: 0.0929 - val_accuracy: 0.9483 Epoch 656/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0233 - accuracy: 0.9957 - val_loss: 0.0930 - val_accuracy: 0.9483 Epoch 657/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0212 - accuracy: 0.9957 - val_loss: 0.0922 - val_accuracy: 0.9483 Epoch 658/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0394 - accuracy: 0.9913 - val_loss: 0.0911 - val_accuracy: 0.9483 Epoch 659/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0312 - accuracy: 0.9913 - val_loss: 0.0903 - val_accuracy: 0.9483 Epoch 660/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0259 - accuracy: 0.9957 - val_loss: 0.0887 - val_accuracy: 0.9483 Epoch 661/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0468 - accuracy: 0.9870 - val_loss: 0.0874 - val_accuracy: 0.9483 Epoch 662/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0489 - accuracy: 0.9783 - val_loss: 0.0936 - val_accuracy: 0.9655 Epoch 663/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0362 - accuracy: 0.9783 - val_loss: 0.1033 - val_accuracy: 0.9655 Epoch 664/3000 2/2 [==============================] - 0s 29ms/step - loss: 0.0370 - accuracy: 0.9870 - val_loss: 0.1122 - val_accuracy: 0.9483 Epoch 665/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0572 - accuracy: 0.9783 - val_loss: 0.1152 - val_accuracy: 0.9483 Epoch 666/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0384 - accuracy: 0.9826 - val_loss: 0.1133 - val_accuracy: 0.9483 Epoch 667/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0572 - accuracy: 0.9826 - val_loss: 0.1063 - val_accuracy: 0.9483 Epoch 668/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0761 - accuracy: 0.9739 - val_loss: 0.0965 - val_accuracy: 0.9483 Epoch 669/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0351 - accuracy: 0.9870 - val_loss: 0.0895 - val_accuracy: 0.9655 Epoch 670/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0348 - accuracy: 0.9957 - val_loss: 0.0884 - val_accuracy: 0.9483 Epoch 671/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0362 - accuracy: 0.9826 - val_loss: 0.0925 - val_accuracy: 0.9483 Epoch 672/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0405 - accuracy: 0.9783 - val_loss: 0.0943 - val_accuracy: 0.9483 Epoch 673/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0844 - accuracy: 0.9739 - val_loss: 0.0913 - val_accuracy: 0.9483 Epoch 674/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0289 - accuracy: 0.9870 - val_loss: 0.0960 - val_accuracy: 0.9655 Epoch 675/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0452 - accuracy: 0.9783 - val_loss: 0.1008 - val_accuracy: 0.9483 Epoch 676/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0398 - accuracy: 0.9913 - val_loss: 0.1033 - val_accuracy: 0.9483 Epoch 677/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0384 - accuracy: 0.9913 - val_loss: 0.1003 - val_accuracy: 0.9655 Epoch 678/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0431 - accuracy: 0.9826 - val_loss: 0.0960 - val_accuracy: 0.9483 Epoch 679/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0350 - accuracy: 0.9870 - val_loss: 0.0933 - val_accuracy: 0.9483 Epoch 680/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0137 - accuracy: 1.0000 - val_loss: 0.0936 - val_accuracy: 0.9483 Epoch 681/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0257 - accuracy: 0.9913 - val_loss: 0.0957 - val_accuracy: 0.9483 Epoch 682/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0183 - accuracy: 1.0000 - val_loss: 0.0981 - val_accuracy: 0.9483 Epoch 683/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0362 - accuracy: 0.9870 - val_loss: 0.0977 - val_accuracy: 0.9483 Epoch 684/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0674 - accuracy: 0.9826 - val_loss: 0.0935 - val_accuracy: 0.9483 Epoch 685/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0284 - accuracy: 0.9870 - val_loss: 0.0920 - val_accuracy: 0.9483 Epoch 686/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0253 - accuracy: 0.9957 - val_loss: 0.0934 - val_accuracy: 0.9483 Epoch 687/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0470 - accuracy: 0.9783 - val_loss: 0.0942 - val_accuracy: 0.9483 Epoch 688/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0430 - accuracy: 0.9739 - val_loss: 0.0935 - val_accuracy: 0.9483 Epoch 689/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0618 - accuracy: 0.9783 - val_loss: 0.0922 - val_accuracy: 0.9483 Epoch 690/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0278 - accuracy: 0.9913 - val_loss: 0.0902 - val_accuracy: 0.9483 Epoch 691/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0445 - accuracy: 0.9913 - val_loss: 0.0864 - val_accuracy: 0.9483 Epoch 692/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0281 - accuracy: 0.9957 - val_loss: 0.0840 - val_accuracy: 0.9483 Epoch 693/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0251 - accuracy: 0.9957 - val_loss: 0.0830 - val_accuracy: 0.9483 Epoch 694/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0307 - accuracy: 0.9913 - val_loss: 0.0821 - val_accuracy: 0.9483 Epoch 695/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0227 - accuracy: 0.9957 - val_loss: 0.0822 - val_accuracy: 0.9483 Epoch 696/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0592 - accuracy: 0.9783 - val_loss: 0.0829 - val_accuracy: 0.9655 Epoch 697/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0454 - accuracy: 0.9913 - val_loss: 0.0838 - val_accuracy: 0.9655 Epoch 698/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0201 - accuracy: 1.0000 - val_loss: 0.0833 - val_accuracy: 0.9655 Epoch 699/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0414 - accuracy: 0.9913 - val_loss: 0.0822 - val_accuracy: 0.9655 Epoch 700/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0277 - accuracy: 0.9913 - val_loss: 0.0801 - val_accuracy: 0.9655 Epoch 701/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0284 - accuracy: 0.9957 - val_loss: 0.0789 - val_accuracy: 0.9655 Epoch 702/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0328 - accuracy: 0.9913 - val_loss: 0.0782 - val_accuracy: 0.9655 Epoch 703/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0334 - accuracy: 0.9957 - val_loss: 0.0777 - val_accuracy: 0.9655 Epoch 704/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0611 - accuracy: 0.9870 - val_loss: 0.0753 - val_accuracy: 0.9655 Epoch 705/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0277 - accuracy: 0.9913 - val_loss: 0.0734 - val_accuracy: 0.9655 Epoch 706/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0330 - accuracy: 0.9913 - val_loss: 0.0738 - val_accuracy: 0.9655 Epoch 707/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0246 - accuracy: 0.9957 - val_loss: 0.0738 - val_accuracy: 0.9655 Epoch 708/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0337 - accuracy: 0.9913 - val_loss: 0.0723 - val_accuracy: 0.9655 Epoch 709/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0234 - accuracy: 0.9957 - val_loss: 0.0720 - val_accuracy: 0.9483 Epoch 710/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0264 - accuracy: 0.9957 - val_loss: 0.0725 - val_accuracy: 0.9483 Epoch 711/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0610 - accuracy: 0.9913 - val_loss: 0.0725 - val_accuracy: 0.9483 Epoch 712/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0594 - accuracy: 0.9826 - val_loss: 0.0715 - val_accuracy: 0.9483 Epoch 713/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0124 - accuracy: 1.0000 - val_loss: 0.0740 - val_accuracy: 0.9655 Epoch 714/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0230 - accuracy: 0.9957 - val_loss: 0.0779 - val_accuracy: 0.9655 Epoch 715/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0180 - accuracy: 0.9957 - val_loss: 0.0813 - val_accuracy: 0.9655 Epoch 716/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0356 - accuracy: 0.9870 - val_loss: 0.0797 - val_accuracy: 0.9655 Epoch 717/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0402 - accuracy: 0.9913 - val_loss: 0.0778 - val_accuracy: 0.9655 Epoch 718/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0301 - accuracy: 0.9826 - val_loss: 0.0742 - val_accuracy: 0.9655 Epoch 719/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0237 - accuracy: 0.9957 - val_loss: 0.0737 - val_accuracy: 0.9655 Epoch 720/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0223 - accuracy: 0.9957 - val_loss: 0.0732 - val_accuracy: 0.9655 Epoch 721/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0207 - accuracy: 0.9957 - val_loss: 0.0735 - val_accuracy: 0.9655 Epoch 722/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0550 - accuracy: 0.9957 - val_loss: 0.0716 - val_accuracy: 0.9655 Epoch 723/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0198 - accuracy: 0.9957 - val_loss: 0.0722 - val_accuracy: 0.9655 Epoch 724/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0242 - accuracy: 0.9913 - val_loss: 0.0724 - val_accuracy: 0.9655 Epoch 725/3000 2/2 [==============================] - 0s 56ms/step - loss: 0.0306 - accuracy: 0.9913 - val_loss: 0.0733 - val_accuracy: 0.9655 Epoch 726/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0269 - accuracy: 0.9957 - val_loss: 0.0756 - val_accuracy: 0.9655 Epoch 727/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0452 - accuracy: 0.9870 - val_loss: 0.0762 - val_accuracy: 0.9655 Epoch 728/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0135 - accuracy: 1.0000 - val_loss: 0.0746 - val_accuracy: 0.9655 Epoch 729/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0168 - accuracy: 1.0000 - val_loss: 0.0747 - val_accuracy: 0.9655 Epoch 730/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0199 - accuracy: 0.9957 - val_loss: 0.0759 - val_accuracy: 0.9483 Epoch 731/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0559 - accuracy: 0.9913 - val_loss: 0.0772 - val_accuracy: 0.9483 Epoch 732/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0276 - accuracy: 0.9957 - val_loss: 0.0786 - val_accuracy: 0.9483 Epoch 733/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0405 - accuracy: 0.9826 - val_loss: 0.0798 - val_accuracy: 0.9655 Epoch 734/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0733 - accuracy: 0.9826 - val_loss: 0.0798 - val_accuracy: 0.9655 Epoch 735/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0142 - accuracy: 0.9957 - val_loss: 0.0795 - val_accuracy: 0.9655 Epoch 736/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0447 - accuracy: 0.9870 - val_loss: 0.0784 - val_accuracy: 0.9483 Epoch 737/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0291 - accuracy: 0.9913 - val_loss: 0.0773 - val_accuracy: 0.9483 Epoch 738/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0287 - accuracy: 0.9913 - val_loss: 0.0768 - val_accuracy: 0.9483 Epoch 739/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0309 - accuracy: 0.9913 - val_loss: 0.0763 - val_accuracy: 0.9655 Epoch 740/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0370 - accuracy: 0.9783 - val_loss: 0.0747 - val_accuracy: 0.9655 Epoch 741/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0239 - accuracy: 0.9957 - val_loss: 0.0733 - val_accuracy: 0.9655 Epoch 742/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0539 - accuracy: 0.9870 - val_loss: 0.0733 - val_accuracy: 0.9655 Epoch 743/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0766 - accuracy: 0.9739 - val_loss: 0.0729 - val_accuracy: 0.9655 Epoch 744/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0136 - accuracy: 1.0000 - val_loss: 0.0718 - val_accuracy: 0.9655 Epoch 745/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0150 - accuracy: 1.0000 - val_loss: 0.0716 - val_accuracy: 0.9655 Epoch 746/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0344 - accuracy: 0.9957 - val_loss: 0.0708 - val_accuracy: 0.9655 Epoch 747/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0418 - accuracy: 0.9957 - val_loss: 0.0695 - val_accuracy: 0.9655 Epoch 748/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0282 - accuracy: 0.9957 - val_loss: 0.0684 - val_accuracy: 0.9655 Epoch 749/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0507 - accuracy: 0.9913 - val_loss: 0.0679 - val_accuracy: 0.9655 Epoch 750/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0259 - accuracy: 0.9913 - val_loss: 0.0672 - val_accuracy: 0.9655 Epoch 751/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0219 - accuracy: 0.9957 - val_loss: 0.0670 - val_accuracy: 0.9655 Epoch 752/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0350 - accuracy: 0.9870 - val_loss: 0.0672 - val_accuracy: 0.9655 Epoch 753/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0355 - accuracy: 0.9826 - val_loss: 0.0676 - val_accuracy: 0.9655 Epoch 754/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0122 - accuracy: 1.0000 - val_loss: 0.0691 - val_accuracy: 0.9655 Epoch 755/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0367 - accuracy: 0.9870 - val_loss: 0.0693 - val_accuracy: 0.9655 Epoch 756/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0081 - accuracy: 1.0000 - val_loss: 0.0696 - val_accuracy: 0.9655 Epoch 757/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0170 - accuracy: 0.9957 - val_loss: 0.0703 - val_accuracy: 0.9655 Epoch 758/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0282 - accuracy: 0.9913 - val_loss: 0.0712 - val_accuracy: 0.9655 Epoch 759/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0309 - accuracy: 0.9913 - val_loss: 0.0715 - val_accuracy: 0.9655 Epoch 760/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0314 - accuracy: 0.9913 - val_loss: 0.0715 - val_accuracy: 0.9655 Epoch 761/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0339 - accuracy: 0.9913 - val_loss: 0.0728 - val_accuracy: 0.9655 Epoch 762/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0238 - accuracy: 0.9913 - val_loss: 0.0754 - val_accuracy: 0.9655 Epoch 763/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0304 - accuracy: 0.9913 - val_loss: 0.0796 - val_accuracy: 0.9655 Epoch 764/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0328 - accuracy: 0.9957 - val_loss: 0.0864 - val_accuracy: 0.9655 Epoch 765/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0283 - accuracy: 0.9957 - val_loss: 0.0915 - val_accuracy: 0.9655 Epoch 766/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0490 - accuracy: 0.9826 - val_loss: 0.0945 - val_accuracy: 0.9655 Epoch 767/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0483 - accuracy: 0.9783 - val_loss: 0.0853 - val_accuracy: 0.9655 Epoch 768/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0187 - accuracy: 0.9913 - val_loss: 0.0761 - val_accuracy: 0.9655 Epoch 769/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0190 - accuracy: 0.9913 - val_loss: 0.0698 - val_accuracy: 0.9655 Epoch 770/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0227 - accuracy: 0.9957 - val_loss: 0.0657 - val_accuracy: 0.9655 Epoch 771/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0257 - accuracy: 0.9913 - val_loss: 0.0617 - val_accuracy: 0.9655 Epoch 772/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0349 - accuracy: 0.9957 - val_loss: 0.0602 - val_accuracy: 0.9655 Epoch 773/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0458 - accuracy: 0.9913 - val_loss: 0.0602 - val_accuracy: 0.9655 Epoch 774/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0148 - accuracy: 0.9957 - val_loss: 0.0619 - val_accuracy: 0.9655 Epoch 775/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0506 - accuracy: 0.9913 - val_loss: 0.0647 - val_accuracy: 0.9655 Epoch 776/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0242 - accuracy: 0.9957 - val_loss: 0.0704 - val_accuracy: 0.9655 Epoch 777/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0610 - accuracy: 0.9870 - val_loss: 0.0788 - val_accuracy: 0.9655 Epoch 778/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0286 - accuracy: 0.9913 - val_loss: 0.0835 - val_accuracy: 0.9655 Epoch 779/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0156 - accuracy: 0.9913 - val_loss: 0.0873 - val_accuracy: 0.9655 Epoch 780/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0482 - accuracy: 0.9826 - val_loss: 0.0865 - val_accuracy: 0.9655 Epoch 781/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0335 - accuracy: 0.9870 - val_loss: 0.0828 - val_accuracy: 0.9655 Epoch 782/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0355 - accuracy: 0.9913 - val_loss: 0.0808 - val_accuracy: 0.9655 Epoch 783/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0287 - accuracy: 0.9913 - val_loss: 0.0769 - val_accuracy: 0.9655 Epoch 784/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0522 - accuracy: 0.9826 - val_loss: 0.0712 - val_accuracy: 0.9655 Epoch 785/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0359 - accuracy: 0.9870 - val_loss: 0.0628 - val_accuracy: 0.9655 Epoch 786/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0216 - accuracy: 0.9957 - val_loss: 0.0594 - val_accuracy: 0.9655 Epoch 787/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0326 - accuracy: 0.9870 - val_loss: 0.0597 - val_accuracy: 0.9655 Epoch 788/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0208 - accuracy: 1.0000 - val_loss: 0.0611 - val_accuracy: 0.9655 Epoch 789/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0323 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9655 Epoch 790/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0478 - accuracy: 0.9913 - val_loss: 0.0690 - val_accuracy: 0.9655 Epoch 791/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0138 - accuracy: 0.9957 - val_loss: 0.0761 - val_accuracy: 0.9655 Epoch 792/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0217 - accuracy: 0.9913 - val_loss: 0.0824 - val_accuracy: 0.9655 Epoch 793/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.1213 - accuracy: 0.9739 - val_loss: 0.0738 - val_accuracy: 0.9655 Epoch 794/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0129 - accuracy: 1.0000 - val_loss: 0.0634 - val_accuracy: 0.9655 Epoch 795/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0157 - accuracy: 1.0000 - val_loss: 0.0580 - val_accuracy: 0.9655 Epoch 796/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0133 - accuracy: 1.0000 - val_loss: 0.0569 - val_accuracy: 0.9655 Epoch 797/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0235 - accuracy: 0.9913 - val_loss: 0.0575 - val_accuracy: 0.9655 Epoch 798/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0364 - accuracy: 0.9870 - val_loss: 0.0614 - val_accuracy: 0.9655 Epoch 799/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0187 - accuracy: 0.9957 - val_loss: 0.0635 - val_accuracy: 0.9655 Epoch 800/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0157 - accuracy: 1.0000 - val_loss: 0.0643 - val_accuracy: 0.9655 Epoch 801/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0083 - accuracy: 1.0000 - val_loss: 0.0651 - val_accuracy: 0.9655 Epoch 802/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0322 - accuracy: 0.9870 - val_loss: 0.0654 - val_accuracy: 0.9655 Epoch 803/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0247 - accuracy: 0.9913 - val_loss: 0.0639 - val_accuracy: 0.9655 Epoch 804/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0272 - accuracy: 0.9913 - val_loss: 0.0633 - val_accuracy: 0.9655 Epoch 805/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0214 - accuracy: 0.9913 - val_loss: 0.0649 - val_accuracy: 0.9655 Epoch 806/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0547 - accuracy: 0.9783 - val_loss: 0.0683 - val_accuracy: 0.9655 Epoch 807/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0116 - accuracy: 1.0000 - val_loss: 0.0727 - val_accuracy: 0.9655 Epoch 808/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0151 - accuracy: 0.9957 - val_loss: 0.0756 - val_accuracy: 0.9655 Epoch 809/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0281 - accuracy: 0.9957 - val_loss: 0.0759 - val_accuracy: 0.9655 Epoch 810/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0179 - accuracy: 0.9957 - val_loss: 0.0734 - val_accuracy: 0.9655 Epoch 811/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0175 - accuracy: 0.9957 - val_loss: 0.0714 - val_accuracy: 0.9655 Epoch 812/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0143 - accuracy: 0.9957 - val_loss: 0.0719 - val_accuracy: 0.9655 Epoch 813/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0237 - accuracy: 0.9957 - val_loss: 0.0716 - val_accuracy: 0.9655 Epoch 814/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0199 - accuracy: 0.9957 - val_loss: 0.0721 - val_accuracy: 0.9655 Epoch 815/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0257 - accuracy: 0.9913 - val_loss: 0.0713 - val_accuracy: 0.9655 Epoch 816/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0341 - accuracy: 0.9913 - val_loss: 0.0704 - val_accuracy: 0.9655 Epoch 817/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0120 - accuracy: 0.9957 - val_loss: 0.0723 - val_accuracy: 0.9655 Epoch 818/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0333 - accuracy: 0.9826 - val_loss: 0.0747 - val_accuracy: 0.9655 Epoch 819/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0190 - accuracy: 0.9913 - val_loss: 0.0745 - val_accuracy: 0.9655 Epoch 820/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0227 - accuracy: 0.9913 - val_loss: 0.0692 - val_accuracy: 0.9655 Epoch 821/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0373 - accuracy: 0.9870 - val_loss: 0.0622 - val_accuracy: 0.9655 Epoch 822/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0299 - accuracy: 0.9913 - val_loss: 0.0568 - val_accuracy: 0.9655 Epoch 823/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0192 - accuracy: 1.0000 - val_loss: 0.0533 - val_accuracy: 0.9655 Epoch 824/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0136 - accuracy: 1.0000 - val_loss: 0.0520 - val_accuracy: 0.9655 Epoch 825/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0199 - accuracy: 0.9913 - val_loss: 0.0519 - val_accuracy: 0.9655 Epoch 826/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0262 - accuracy: 0.9957 - val_loss: 0.0538 - val_accuracy: 0.9655 Epoch 827/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0095 - accuracy: 0.9957 - val_loss: 0.0569 - val_accuracy: 0.9655 Epoch 828/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0159 - accuracy: 0.9957 - val_loss: 0.0618 - val_accuracy: 0.9655 Epoch 829/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0570 - accuracy: 0.9783 - val_loss: 0.0713 - val_accuracy: 0.9655 Epoch 830/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0270 - accuracy: 0.9870 - val_loss: 0.0788 - val_accuracy: 0.9655 Epoch 831/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0367 - accuracy: 0.9957 - val_loss: 0.0845 - val_accuracy: 0.9655 Epoch 832/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0330 - accuracy: 0.9957 - val_loss: 0.0804 - val_accuracy: 0.9655 Epoch 833/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0221 - accuracy: 0.9913 - val_loss: 0.0750 - val_accuracy: 0.9655 Epoch 834/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0152 - accuracy: 1.0000 - val_loss: 0.0695 - val_accuracy: 0.9655 Epoch 835/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0529 - accuracy: 0.9913 - val_loss: 0.0631 - val_accuracy: 0.9655 Epoch 836/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0330 - accuracy: 0.9913 - val_loss: 0.0672 - val_accuracy: 0.9655 Epoch 837/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0083 - accuracy: 1.0000 - val_loss: 0.0713 - val_accuracy: 0.9655 Epoch 838/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0207 - accuracy: 0.9913 - val_loss: 0.0753 - val_accuracy: 0.9655 Epoch 839/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0440 - accuracy: 0.9826 - val_loss: 0.0748 - val_accuracy: 0.9655 Epoch 840/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0179 - accuracy: 0.9957 - val_loss: 0.0713 - val_accuracy: 0.9655 Epoch 841/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0167 - accuracy: 0.9957 - val_loss: 0.0674 - val_accuracy: 0.9655 Epoch 842/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0280 - accuracy: 0.9913 - val_loss: 0.0619 - val_accuracy: 0.9655 Epoch 843/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0264 - accuracy: 0.9913 - val_loss: 0.0597 - val_accuracy: 0.9655 Epoch 844/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0164 - accuracy: 1.0000 - val_loss: 0.0611 - val_accuracy: 0.9655 Epoch 845/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0465 - accuracy: 0.9826 - val_loss: 0.0697 - val_accuracy: 0.9655 Epoch 846/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0184 - accuracy: 0.9957 - val_loss: 0.0815 - val_accuracy: 0.9483 Epoch 847/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0345 - accuracy: 0.9957 - val_loss: 0.0930 - val_accuracy: 0.9483 Epoch 848/3000 2/2 [==============================] - 0s 30ms/step - loss: 0.0260 - accuracy: 0.9957 - val_loss: 0.0998 - val_accuracy: 0.9483 Epoch 849/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0280 - accuracy: 0.9870 - val_loss: 0.1009 - val_accuracy: 0.9483 Epoch 850/3000 2/2 [==============================] - 0s 43ms/step - loss: 0.0396 - accuracy: 0.9739 - val_loss: 0.0976 - val_accuracy: 0.9483 Epoch 851/3000 2/2 [==============================] - 0s 54ms/step - loss: 0.0151 - accuracy: 0.9957 - val_loss: 0.0899 - val_accuracy: 0.9483 Epoch 852/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0414 - accuracy: 0.9870 - val_loss: 0.0816 - val_accuracy: 0.9483 Epoch 853/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0418 - accuracy: 0.9913 - val_loss: 0.0781 - val_accuracy: 0.9483 Epoch 854/3000 2/2 [==============================] - 0s 43ms/step - loss: 0.0172 - accuracy: 1.0000 - val_loss: 0.0783 - val_accuracy: 0.9483 Epoch 855/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0530 - accuracy: 0.9870 - val_loss: 0.0820 - val_accuracy: 0.9483 Epoch 856/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0216 - accuracy: 0.9957 - val_loss: 0.0925 - val_accuracy: 0.9483 Epoch 857/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0288 - accuracy: 0.9870 - val_loss: 0.1026 - val_accuracy: 0.9483 Epoch 858/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0190 - accuracy: 0.9957 - val_loss: 0.1086 - val_accuracy: 0.9483 Epoch 859/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0237 - accuracy: 0.9913 - val_loss: 0.1098 - val_accuracy: 0.9483 Epoch 860/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0316 - accuracy: 0.9913 - val_loss: 0.1005 - val_accuracy: 0.9483 Epoch 861/3000 2/2 [==============================] - 0s 31ms/step - loss: 0.0302 - accuracy: 0.9913 - val_loss: 0.0888 - val_accuracy: 0.9483 Epoch 862/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0146 - accuracy: 0.9913 - val_loss: 0.0802 - val_accuracy: 0.9483 Epoch 863/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0163 - accuracy: 0.9957 - val_loss: 0.0765 - val_accuracy: 0.9655 Epoch 864/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0222 - accuracy: 0.9957 - val_loss: 0.0752 - val_accuracy: 0.9655 Epoch 865/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0357 - accuracy: 0.9870 - val_loss: 0.0774 - val_accuracy: 0.9483 Epoch 866/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0157 - accuracy: 0.9957 - val_loss: 0.0806 - val_accuracy: 0.9483 Epoch 867/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0182 - accuracy: 0.9957 - val_loss: 0.0824 - val_accuracy: 0.9483 Epoch 868/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0123 - accuracy: 1.0000 - val_loss: 0.0837 - val_accuracy: 0.9483 Epoch 869/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0079 - accuracy: 1.0000 - val_loss: 0.0840 - val_accuracy: 0.9483 Epoch 870/3000 2/2 [==============================] - 0s 53ms/step - loss: 0.0158 - accuracy: 0.9913 - val_loss: 0.0824 - val_accuracy: 0.9483 Epoch 871/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0236 - accuracy: 0.9957 - val_loss: 0.0813 - val_accuracy: 0.9483 Epoch 872/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0109 - accuracy: 1.0000 - val_loss: 0.0809 - val_accuracy: 0.9483 Epoch 873/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0812 - val_accuracy: 0.9483 Epoch 874/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0205 - accuracy: 0.9957 - val_loss: 0.0813 - val_accuracy: 0.9483 Epoch 875/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0129 - accuracy: 1.0000 - val_loss: 0.0833 - val_accuracy: 0.9483 Epoch 876/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0289 - accuracy: 0.9913 - val_loss: 0.0888 - val_accuracy: 0.9483 Epoch 877/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.0932 - val_accuracy: 0.9483 Epoch 878/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0126 - accuracy: 0.9957 - val_loss: 0.0992 - val_accuracy: 0.9483 Epoch 879/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0272 - accuracy: 0.9826 - val_loss: 0.0999 - val_accuracy: 0.9483 Epoch 880/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0226 - accuracy: 0.9957 - val_loss: 0.0954 - val_accuracy: 0.9483 Epoch 881/3000 2/2 [==============================] - 0s 59ms/step - loss: 0.0089 - accuracy: 1.0000 - val_loss: 0.0894 - val_accuracy: 0.9483 Epoch 882/3000 2/2 [==============================] - 0s 57ms/step - loss: 0.0189 - accuracy: 0.9957 - val_loss: 0.0808 - val_accuracy: 0.9655 Epoch 883/3000 2/2 [==============================] - 0s 53ms/step - loss: 0.0208 - accuracy: 0.9913 - val_loss: 0.0778 - val_accuracy: 0.9655 Epoch 884/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0313 - accuracy: 0.9957 - val_loss: 0.0769 - val_accuracy: 0.9655 Epoch 885/3000 2/2 [==============================] - 0s 67ms/step - loss: 0.0124 - accuracy: 1.0000 - val_loss: 0.0760 - val_accuracy: 0.9655 Epoch 886/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0373 - accuracy: 0.9957 - val_loss: 0.0817 - val_accuracy: 0.9655 Epoch 887/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0123 - accuracy: 1.0000 - val_loss: 0.0895 - val_accuracy: 0.9483 Epoch 888/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0074 - accuracy: 1.0000 - val_loss: 0.0949 - val_accuracy: 0.9483 Epoch 889/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0176 - accuracy: 0.9870 - val_loss: 0.0976 - val_accuracy: 0.9483 Epoch 890/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0124 - accuracy: 0.9957 - val_loss: 0.0976 - val_accuracy: 0.9483 Epoch 891/3000 2/2 [==============================] - 0s 59ms/step - loss: 0.0165 - accuracy: 0.9957 - val_loss: 0.0985 - val_accuracy: 0.9655 Epoch 892/3000 2/2 [==============================] - 0s 57ms/step - loss: 0.0171 - accuracy: 0.9913 - val_loss: 0.0992 - val_accuracy: 0.9655 Epoch 893/3000 2/2 [==============================] - 0s 71ms/step - loss: 0.0234 - accuracy: 0.9913 - val_loss: 0.0998 - val_accuracy: 0.9655 Epoch 894/3000 2/2 [==============================] - 0s 65ms/step - loss: 0.0205 - accuracy: 0.9957 - val_loss: 0.0929 - val_accuracy: 0.9655 Epoch 895/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0110 - accuracy: 1.0000 - val_loss: 0.0855 - val_accuracy: 0.9655 Epoch 896/3000 2/2 [==============================] - 0s 66ms/step - loss: 0.0123 - accuracy: 1.0000 - val_loss: 0.0793 - val_accuracy: 0.9655 Epoch 897/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0180 - accuracy: 0.9913 - val_loss: 0.0732 - val_accuracy: 0.9655 Epoch 898/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0199 - accuracy: 0.9870 - val_loss: 0.0696 - val_accuracy: 0.9655 Epoch 899/3000 2/2 [==============================] - 0s 58ms/step - loss: 0.0096 - accuracy: 1.0000 - val_loss: 0.0681 - val_accuracy: 0.9655 Epoch 900/3000 2/2 [==============================] - 0s 70ms/step - loss: 0.0325 - accuracy: 0.9826 - val_loss: 0.0662 - val_accuracy: 0.9655 Epoch 901/3000 2/2 [==============================] - 0s 64ms/step - loss: 0.0219 - accuracy: 0.9913 - val_loss: 0.0696 - val_accuracy: 0.9655 Epoch 902/3000 2/2 [==============================] - 0s 61ms/step - loss: 0.0105 - accuracy: 1.0000 - val_loss: 0.0762 - val_accuracy: 0.9655 Epoch 903/3000 2/2 [==============================] - 0s 78ms/step - loss: 0.0207 - accuracy: 0.9870 - val_loss: 0.0868 - val_accuracy: 0.9655 Epoch 904/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0150 - accuracy: 0.9957 - val_loss: 0.0932 - val_accuracy: 0.9483 Epoch 905/3000 2/2 [==============================] - 0s 62ms/step - loss: 0.0079 - accuracy: 1.0000 - val_loss: 0.0917 - val_accuracy: 0.9655 Epoch 906/3000 2/2 [==============================] - 0s 54ms/step - loss: 0.0119 - accuracy: 1.0000 - val_loss: 0.0867 - val_accuracy: 0.9655 Epoch 907/3000 2/2 [==============================] - 0s 73ms/step - loss: 0.0111 - accuracy: 1.0000 - val_loss: 0.0786 - val_accuracy: 0.9655 Epoch 908/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0194 - accuracy: 0.9957 - val_loss: 0.0687 - val_accuracy: 0.9655 Epoch 909/3000 2/2 [==============================] - 0s 59ms/step - loss: 0.0191 - accuracy: 0.9957 - val_loss: 0.0598 - val_accuracy: 0.9655 Epoch 910/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0814 - accuracy: 0.9870 - val_loss: 0.0524 - val_accuracy: 0.9655 Epoch 911/3000 2/2 [==============================] - 0s 59ms/step - loss: 0.0119 - accuracy: 0.9913 - val_loss: 0.0486 - val_accuracy: 0.9655 Epoch 912/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0157 - accuracy: 0.9913 - val_loss: 0.0480 - val_accuracy: 0.9655 Epoch 913/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0328 - accuracy: 0.9870 - val_loss: 0.0476 - val_accuracy: 0.9828 Epoch 914/3000 2/2 [==============================] - 0s 61ms/step - loss: 0.0265 - accuracy: 0.9870 - val_loss: 0.0490 - val_accuracy: 0.9828 Epoch 915/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0272 - accuracy: 0.9870 - val_loss: 0.0539 - val_accuracy: 0.9828 Epoch 916/3000 2/2 [==============================] - 0s 66ms/step - loss: 0.0134 - accuracy: 0.9957 - val_loss: 0.0590 - val_accuracy: 0.9655 Epoch 917/3000 2/2 [==============================] - 0s 70ms/step - loss: 0.0074 - accuracy: 1.0000 - val_loss: 0.0625 - val_accuracy: 0.9655 Epoch 918/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0221 - accuracy: 0.9826 - val_loss: 0.0638 - val_accuracy: 0.9655 Epoch 919/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0144 - accuracy: 1.0000 - val_loss: 0.0641 - val_accuracy: 0.9655 Epoch 920/3000 2/2 [==============================] - 0s 77ms/step - loss: 0.0210 - accuracy: 0.9913 - val_loss: 0.0653 - val_accuracy: 0.9655 Epoch 921/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0120 - accuracy: 1.0000 - val_loss: 0.0680 - val_accuracy: 0.9655 Epoch 922/3000 2/2 [==============================] - 0s 58ms/step - loss: 0.0081 - accuracy: 1.0000 - val_loss: 0.0693 - val_accuracy: 0.9655 Epoch 923/3000 2/2 [==============================] - 0s 68ms/step - loss: 0.0346 - accuracy: 0.9913 - val_loss: 0.0670 - val_accuracy: 0.9655 Epoch 924/3000 2/2 [==============================] - 0s 54ms/step - loss: 0.0131 - accuracy: 1.0000 - val_loss: 0.0648 - val_accuracy: 0.9655 Epoch 925/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0030 - accuracy: 1.0000 - val_loss: 0.0617 - val_accuracy: 0.9655 Epoch 926/3000 2/2 [==============================] - 0s 80ms/step - loss: 0.0089 - accuracy: 1.0000 - val_loss: 0.0591 - val_accuracy: 0.9655 Epoch 927/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0157 - accuracy: 1.0000 - val_loss: 0.0586 - val_accuracy: 0.9655 Epoch 928/3000 2/2 [==============================] - 0s 63ms/step - loss: 0.0186 - accuracy: 0.9957 - val_loss: 0.0593 - val_accuracy: 0.9655 Epoch 929/3000 2/2 [==============================] - 0s 57ms/step - loss: 0.0307 - accuracy: 0.9870 - val_loss: 0.0581 - val_accuracy: 0.9655 Epoch 930/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0214 - accuracy: 0.9870 - val_loss: 0.0617 - val_accuracy: 0.9655 Epoch 931/3000 2/2 [==============================] - 0s 74ms/step - loss: 0.0223 - accuracy: 0.9870 - val_loss: 0.0699 - val_accuracy: 0.9655 Epoch 932/3000 2/2 [==============================] - 0s 62ms/step - loss: 0.0296 - accuracy: 0.9870 - val_loss: 0.0730 - val_accuracy: 0.9655 Epoch 933/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0078 - accuracy: 1.0000 - val_loss: 0.0715 - val_accuracy: 0.9655 Epoch 934/3000 2/2 [==============================] - 0s 65ms/step - loss: 0.0117 - accuracy: 1.0000 - val_loss: 0.0693 - val_accuracy: 0.9655 Epoch 935/3000 2/2 [==============================] - 0s 54ms/step - loss: 0.0101 - accuracy: 0.9957 - val_loss: 0.0668 - val_accuracy: 0.9655 Epoch 936/3000 2/2 [==============================] - 0s 79ms/step - loss: 0.0235 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9655 Epoch 937/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0408 - accuracy: 0.9870 - val_loss: 0.0649 - val_accuracy: 0.9655 Epoch 938/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0095 - accuracy: 1.0000 - val_loss: 0.0709 - val_accuracy: 0.9655 Epoch 939/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0087 - accuracy: 1.0000 - val_loss: 0.0750 - val_accuracy: 0.9655 Epoch 940/3000 2/2 [==============================] - 0s 67ms/step - loss: 0.0159 - accuracy: 0.9913 - val_loss: 0.0771 - val_accuracy: 0.9655 Epoch 941/3000 2/2 [==============================] - 0s 72ms/step - loss: 0.0235 - accuracy: 0.9913 - val_loss: 0.0802 - val_accuracy: 0.9655 Epoch 942/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0326 - accuracy: 0.9913 - val_loss: 0.0804 - val_accuracy: 0.9655 Epoch 943/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0315 - accuracy: 0.9957 - val_loss: 0.0773 - val_accuracy: 0.9655 Epoch 944/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0181 - accuracy: 0.9913 - val_loss: 0.0719 - val_accuracy: 0.9655 Epoch 945/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0114 - accuracy: 1.0000 - val_loss: 0.0651 - val_accuracy: 0.9655 Epoch 946/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0221 - accuracy: 0.9913 - val_loss: 0.0615 - val_accuracy: 0.9655 Epoch 947/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0185 - accuracy: 0.9957 - val_loss: 0.0622 - val_accuracy: 0.9655 Epoch 948/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0110 - accuracy: 1.0000 - val_loss: 0.0626 - val_accuracy: 0.9655 Epoch 949/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0132 - accuracy: 0.9913 - val_loss: 0.0661 - val_accuracy: 0.9655 Epoch 950/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0101 - accuracy: 1.0000 - val_loss: 0.0699 - val_accuracy: 0.9655 Epoch 951/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0096 - accuracy: 1.0000 - val_loss: 0.0740 - val_accuracy: 0.9655 Epoch 952/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0150 - accuracy: 0.9913 - val_loss: 0.0732 - val_accuracy: 0.9655 Epoch 953/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0215 - accuracy: 0.9870 - val_loss: 0.0721 - val_accuracy: 0.9655 Epoch 954/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0156 - accuracy: 0.9913 - val_loss: 0.0650 - val_accuracy: 0.9655 Epoch 955/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0129 - accuracy: 0.9957 - val_loss: 0.0578 - val_accuracy: 0.9655 Epoch 956/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0237 - accuracy: 0.9913 - val_loss: 0.0558 - val_accuracy: 0.9655 Epoch 957/3000 2/2 [==============================] - 0s 53ms/step - loss: 0.0248 - accuracy: 0.9957 - val_loss: 0.0577 - val_accuracy: 0.9655 Epoch 958/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0061 - accuracy: 1.0000 - val_loss: 0.0624 - val_accuracy: 0.9655 Epoch 959/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0095 - accuracy: 0.9957 - val_loss: 0.0691 - val_accuracy: 0.9655 Epoch 960/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0289 - accuracy: 0.9913 - val_loss: 0.0759 - val_accuracy: 0.9655 Epoch 961/3000 2/2 [==============================] - 0s 49ms/step - loss: 0.0150 - accuracy: 0.9957 - val_loss: 0.0753 - val_accuracy: 0.9655 Epoch 962/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0078 - accuracy: 0.9957 - val_loss: 0.0727 - val_accuracy: 0.9655 Epoch 963/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0163 - accuracy: 0.9957 - val_loss: 0.0731 - val_accuracy: 0.9655 Epoch 964/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0037 - accuracy: 1.0000 - val_loss: 0.0749 - val_accuracy: 0.9655 Epoch 965/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.0765 - val_accuracy: 0.9655 Epoch 966/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0155 - accuracy: 0.9957 - val_loss: 0.0805 - val_accuracy: 0.9655 Epoch 967/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0073 - accuracy: 1.0000 - val_loss: 0.0817 - val_accuracy: 0.9655 Epoch 968/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0124 - accuracy: 0.9957 - val_loss: 0.0841 - val_accuracy: 0.9655 Epoch 969/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0105 - accuracy: 0.9957 - val_loss: 0.0858 - val_accuracy: 0.9655 Epoch 970/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0186 - accuracy: 0.9913 - val_loss: 0.0848 - val_accuracy: 0.9655 Epoch 971/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0362 - accuracy: 0.9913 - val_loss: 0.0843 - val_accuracy: 0.9655 Epoch 972/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0232 - accuracy: 0.9957 - val_loss: 0.0778 - val_accuracy: 0.9655 Epoch 973/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0106 - accuracy: 1.0000 - val_loss: 0.0749 - val_accuracy: 0.9655 Epoch 974/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0159 - accuracy: 0.9957 - val_loss: 0.0704 - val_accuracy: 0.9655 Epoch 975/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0109 - accuracy: 1.0000 - val_loss: 0.0677 - val_accuracy: 0.9655 Epoch 976/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0182 - accuracy: 0.9957 - val_loss: 0.0694 - val_accuracy: 0.9655 Epoch 977/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0181 - accuracy: 0.9957 - val_loss: 0.0619 - val_accuracy: 0.9655 Epoch 978/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0084 - accuracy: 1.0000 - val_loss: 0.0574 - val_accuracy: 0.9655 Epoch 979/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0220 - accuracy: 0.9913 - val_loss: 0.0569 - val_accuracy: 0.9655 Epoch 980/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0145 - accuracy: 0.9957 - val_loss: 0.0551 - val_accuracy: 0.9655 Epoch 981/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0075 - accuracy: 1.0000 - val_loss: 0.0537 - val_accuracy: 0.9655 Epoch 982/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0300 - accuracy: 0.9870 - val_loss: 0.0544 - val_accuracy: 0.9655 Epoch 983/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0264 - accuracy: 0.9957 - val_loss: 0.0600 - val_accuracy: 0.9655 Epoch 984/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0076 - accuracy: 1.0000 - val_loss: 0.0693 - val_accuracy: 0.9655 Epoch 985/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0073 - accuracy: 1.0000 - val_loss: 0.0779 - val_accuracy: 0.9655 Epoch 986/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0170 - accuracy: 0.9913 - val_loss: 0.0838 - val_accuracy: 0.9655 Epoch 987/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0136 - accuracy: 0.9957 - val_loss: 0.0888 - val_accuracy: 0.9655 Epoch 988/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0078 - accuracy: 1.0000 - val_loss: 0.0930 - val_accuracy: 0.9655 Epoch 989/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0271 - accuracy: 0.9957 - val_loss: 0.0883 - val_accuracy: 0.9655 Epoch 990/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0165 - accuracy: 1.0000 - val_loss: 0.0804 - val_accuracy: 0.9655 Epoch 991/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.0712 - val_accuracy: 0.9655 Epoch 992/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0298 - accuracy: 0.9957 - val_loss: 0.0655 - val_accuracy: 0.9655 Epoch 993/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 0.0634 - val_accuracy: 0.9655 Epoch 994/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.0625 - val_accuracy: 0.9655 Epoch 995/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0140 - accuracy: 0.9957 - val_loss: 0.0643 - val_accuracy: 0.9655 Epoch 996/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0103 - accuracy: 0.9957 - val_loss: 0.0662 - val_accuracy: 0.9655 Epoch 997/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0647 - accuracy: 0.9739 - val_loss: 0.0726 - val_accuracy: 0.9655 Epoch 998/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0169 - accuracy: 1.0000 - val_loss: 0.0792 - val_accuracy: 0.9655 Epoch 999/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0175 - accuracy: 0.9957 - val_loss: 0.0875 - val_accuracy: 0.9655 Epoch 1000/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0074 - accuracy: 1.0000 - val_loss: 0.0968 - val_accuracy: 0.9655 Epoch 1001/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0246 - accuracy: 0.9957 - val_loss: 0.1098 - val_accuracy: 0.9655 Epoch 1002/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0221 - accuracy: 0.9957 - val_loss: 0.1182 - val_accuracy: 0.9655 Epoch 1003/3000 2/2 [==============================] - 0s 51ms/step - loss: 0.0157 - accuracy: 0.9957 - val_loss: 0.1267 - val_accuracy: 0.9483 Epoch 1004/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0520 - accuracy: 0.9739 - val_loss: 0.1218 - val_accuracy: 0.9483 Epoch 1005/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0419 - accuracy: 0.9826 - val_loss: 0.0991 - val_accuracy: 0.9655 Epoch 1006/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0180 - accuracy: 0.9957 - val_loss: 0.0748 - val_accuracy: 0.9655 Epoch 1007/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0281 - accuracy: 0.9913 - val_loss: 0.0554 - val_accuracy: 0.9655 Epoch 1008/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0062 - accuracy: 1.0000 - val_loss: 0.0450 - val_accuracy: 0.9655 Epoch 1009/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0288 - accuracy: 0.9913 - val_loss: 0.0418 - val_accuracy: 0.9655 Epoch 1010/3000 2/2 [==============================] - 0s 43ms/step - loss: 0.0409 - accuracy: 0.9913 - val_loss: 0.0408 - val_accuracy: 0.9655 Epoch 1011/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0149 - accuracy: 0.9957 - val_loss: 0.0427 - val_accuracy: 0.9655 Epoch 1012/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0291 - accuracy: 0.9826 - val_loss: 0.0500 - val_accuracy: 0.9655 Epoch 1013/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0204 - accuracy: 0.9870 - val_loss: 0.0614 - val_accuracy: 0.9655 Epoch 1014/3000 2/2 [==============================] - 0s 45ms/step - loss: 0.0154 - accuracy: 1.0000 - val_loss: 0.0752 - val_accuracy: 0.9655 Epoch 1015/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0122 - accuracy: 0.9957 - val_loss: 0.0845 - val_accuracy: 0.9655 Epoch 1016/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0108 - accuracy: 1.0000 - val_loss: 0.0916 - val_accuracy: 0.9655 Epoch 1017/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0361 - accuracy: 0.9826 - val_loss: 0.0858 - val_accuracy: 0.9655 Epoch 1018/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0313 - accuracy: 0.9957 - val_loss: 0.0731 - val_accuracy: 0.9655 Epoch 1019/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0535 - accuracy: 0.9870 - val_loss: 0.0555 - val_accuracy: 0.9655 Epoch 1020/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0142 - accuracy: 0.9913 - val_loss: 0.0465 - val_accuracy: 0.9655 Epoch 1021/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0394 - accuracy: 0.9913 - val_loss: 0.0446 - val_accuracy: 0.9655 Epoch 1022/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0211 - accuracy: 0.9957 - val_loss: 0.0483 - val_accuracy: 0.9655 Epoch 1023/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0276 - accuracy: 0.9870 - val_loss: 0.0555 - val_accuracy: 0.9655 Epoch 1024/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0052 - accuracy: 1.0000 - val_loss: 0.0631 - val_accuracy: 0.9655 Epoch 1025/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 0.0702 - val_accuracy: 0.9655 Epoch 1026/3000 2/2 [==============================] - 0s 45ms/step - loss: 0.0285 - accuracy: 0.9870 - val_loss: 0.0782 - val_accuracy: 0.9655 Epoch 1027/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0161 - accuracy: 0.9957 - val_loss: 0.0881 - val_accuracy: 0.9655 Epoch 1028/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0077 - accuracy: 0.9957 - val_loss: 0.0935 - val_accuracy: 0.9655 Epoch 1029/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0193 - accuracy: 0.9957 - val_loss: 0.0899 - val_accuracy: 0.9655 Epoch 1030/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0138 - accuracy: 1.0000 - val_loss: 0.0862 - val_accuracy: 0.9655 Epoch 1031/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0112 - accuracy: 0.9957 - val_loss: 0.0819 - val_accuracy: 0.9655 Epoch 1032/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0110 - accuracy: 0.9957 - val_loss: 0.0778 - val_accuracy: 0.9655 Epoch 1033/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0153 - accuracy: 0.9913 - val_loss: 0.0753 - val_accuracy: 0.9655 Epoch 1034/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0051 - accuracy: 1.0000 - val_loss: 0.0728 - val_accuracy: 0.9655 Epoch 1035/3000 2/2 [==============================] - 0s 53ms/step - loss: 0.0239 - accuracy: 0.9913 - val_loss: 0.0777 - val_accuracy: 0.9655 Epoch 1036/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0302 - accuracy: 0.9870 - val_loss: 0.0868 - val_accuracy: 0.9655 Epoch 1037/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.0986 - val_accuracy: 0.9655 Epoch 1038/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0142 - accuracy: 0.9957 - val_loss: 0.1104 - val_accuracy: 0.9655 Epoch 1039/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0184 - accuracy: 0.9957 - val_loss: 0.1220 - val_accuracy: 0.9655 Epoch 1040/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0101 - accuracy: 1.0000 - val_loss: 0.1292 - val_accuracy: 0.9655 Epoch 1041/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0095 - accuracy: 1.0000 - val_loss: 0.1304 - val_accuracy: 0.9655 Epoch 1042/3000 2/2 [==============================] - 0s 52ms/step - loss: 0.0288 - accuracy: 0.9870 - val_loss: 0.1225 - val_accuracy: 0.9655 Epoch 1043/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0290 - accuracy: 0.9913 - val_loss: 0.1051 - val_accuracy: 0.9655 Epoch 1044/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0125 - accuracy: 0.9957 - val_loss: 0.0864 - val_accuracy: 0.9655 Epoch 1045/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0322 - accuracy: 0.9913 - val_loss: 0.0693 - val_accuracy: 0.9655 Epoch 1046/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0262 - accuracy: 0.9913 - val_loss: 0.0630 - val_accuracy: 0.9655 Epoch 1047/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0315 - accuracy: 0.9826 - val_loss: 0.0632 - val_accuracy: 0.9655 Epoch 1048/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0228 - accuracy: 0.9870 - val_loss: 0.0661 - val_accuracy: 0.9655 Epoch 1049/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0099 - accuracy: 1.0000 - val_loss: 0.0704 - val_accuracy: 0.9655 Epoch 1050/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0164 - accuracy: 0.9957 - val_loss: 0.0737 - val_accuracy: 0.9655 Epoch 1051/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0134 - accuracy: 0.9957 - val_loss: 0.0733 - val_accuracy: 0.9655 Epoch 1052/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0077 - accuracy: 1.0000 - val_loss: 0.0721 - val_accuracy: 0.9655 Epoch 1053/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.0720 - val_accuracy: 0.9655 Epoch 1054/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0202 - accuracy: 0.9913 - val_loss: 0.0752 - val_accuracy: 0.9655 Epoch 1055/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0113 - accuracy: 0.9957 - val_loss: 0.0762 - val_accuracy: 0.9655 Epoch 1056/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0040 - accuracy: 1.0000 - val_loss: 0.0769 - val_accuracy: 0.9655 Epoch 1057/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0347 - accuracy: 0.9957 - val_loss: 0.0754 - val_accuracy: 0.9655 Epoch 1058/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0108 - accuracy: 1.0000 - val_loss: 0.0687 - val_accuracy: 0.9655 Epoch 1059/3000 2/2 [==============================] - 0s 45ms/step - loss: 0.0154 - accuracy: 0.9913 - val_loss: 0.0714 - val_accuracy: 0.9655 Epoch 1060/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0173 - accuracy: 0.9957 - val_loss: 0.0748 - val_accuracy: 0.9655 Epoch 1061/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0139 - accuracy: 0.9957 - val_loss: 0.0812 - val_accuracy: 0.9655 Epoch 1062/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0148 - accuracy: 0.9957 - val_loss: 0.0819 - val_accuracy: 0.9655 Epoch 1063/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0110 - accuracy: 1.0000 - val_loss: 0.0824 - val_accuracy: 0.9655 Epoch 1064/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0187 - accuracy: 0.9913 - val_loss: 0.0887 - val_accuracy: 0.9655 Epoch 1065/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0135 - accuracy: 0.9957 - val_loss: 0.0950 - val_accuracy: 0.9655 Epoch 1066/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0076 - accuracy: 0.9957 - val_loss: 0.0992 - val_accuracy: 0.9655 Epoch 1067/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0190 - accuracy: 0.9913 - val_loss: 0.0977 - val_accuracy: 0.9655 Epoch 1068/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0095 - accuracy: 1.0000 - val_loss: 0.0965 - val_accuracy: 0.9655 Epoch 1069/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0185 - accuracy: 0.9913 - val_loss: 0.0973 - val_accuracy: 0.9655 Epoch 1070/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0095 - accuracy: 0.9957 - val_loss: 0.0933 - val_accuracy: 0.9655 Epoch 1071/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0107 - accuracy: 0.9957 - val_loss: 0.0858 - val_accuracy: 0.9655 Epoch 1072/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0147 - accuracy: 0.9957 - val_loss: 0.0748 - val_accuracy: 0.9655 Epoch 1073/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0162 - accuracy: 0.9957 - val_loss: 0.0677 - val_accuracy: 0.9655 Epoch 1074/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0116 - accuracy: 0.9957 - val_loss: 0.0597 - val_accuracy: 0.9655 Epoch 1075/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0087 - accuracy: 1.0000 - val_loss: 0.0550 - val_accuracy: 0.9655 Epoch 1076/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0149 - accuracy: 0.9957 - val_loss: 0.0532 - val_accuracy: 0.9655 Epoch 1077/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0333 - accuracy: 0.9913 - val_loss: 0.0516 - val_accuracy: 0.9655 Epoch 1078/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0080 - accuracy: 1.0000 - val_loss: 0.0514 - val_accuracy: 0.9655 Epoch 1079/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0094 - accuracy: 0.9957 - val_loss: 0.0529 - val_accuracy: 0.9655 Epoch 1080/3000 2/2 [==============================] - 0s 45ms/step - loss: 0.0118 - accuracy: 0.9957 - val_loss: 0.0570 - val_accuracy: 0.9655 Epoch 1081/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0234 - accuracy: 0.9913 - val_loss: 0.0603 - val_accuracy: 0.9655 Epoch 1082/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0116 - accuracy: 1.0000 - val_loss: 0.0657 - val_accuracy: 0.9655 Epoch 1083/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0076 - accuracy: 1.0000 - val_loss: 0.0735 - val_accuracy: 0.9655 Epoch 1084/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0195 - accuracy: 0.9913 - val_loss: 0.0852 - val_accuracy: 0.9655 Epoch 1085/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0090 - accuracy: 1.0000 - val_loss: 0.0947 - val_accuracy: 0.9655 Epoch 1086/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0506 - accuracy: 0.9870 - val_loss: 0.0847 - val_accuracy: 0.9655 Epoch 1087/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0121 - accuracy: 1.0000 - val_loss: 0.0700 - val_accuracy: 0.9655 Epoch 1088/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0130 - accuracy: 0.9957 - val_loss: 0.0584 - val_accuracy: 0.9655 Epoch 1089/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0070 - accuracy: 1.0000 - val_loss: 0.0510 - val_accuracy: 0.9655 Epoch 1090/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0046 - accuracy: 1.0000 - val_loss: 0.0467 - val_accuracy: 0.9655 Epoch 1091/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0091 - accuracy: 1.0000 - val_loss: 0.0452 - val_accuracy: 0.9828 Epoch 1092/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0424 - accuracy: 0.9870 - val_loss: 0.0453 - val_accuracy: 0.9828 Epoch 1093/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0042 - accuracy: 1.0000 - val_loss: 0.0464 - val_accuracy: 0.9655 Epoch 1094/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0170 - accuracy: 0.9870 - val_loss: 0.0475 - val_accuracy: 0.9655 Epoch 1095/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0158 - accuracy: 0.9957 - val_loss: 0.0510 - val_accuracy: 0.9655 Epoch 1096/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0116 - accuracy: 0.9957 - val_loss: 0.0546 - val_accuracy: 0.9655 Epoch 1097/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 0.0583 - val_accuracy: 0.9655 Epoch 1098/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0168 - accuracy: 0.9913 - val_loss: 0.0629 - val_accuracy: 0.9655 Epoch 1099/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0116 - accuracy: 0.9957 - val_loss: 0.0645 - val_accuracy: 0.9655 Epoch 1100/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0101 - accuracy: 0.9957 - val_loss: 0.0637 - val_accuracy: 0.9655 Epoch 1101/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.0625 - val_accuracy: 0.9655 Epoch 1102/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0056 - accuracy: 0.9957 - val_loss: 0.0605 - val_accuracy: 0.9655 Epoch 1103/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 0.0594 - val_accuracy: 0.9655 Epoch 1104/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0245 - accuracy: 0.9913 - val_loss: 0.0568 - val_accuracy: 0.9655 Epoch 1105/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0304 - accuracy: 0.9913 - val_loss: 0.0528 - val_accuracy: 0.9655 Epoch 1106/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0215 - accuracy: 0.9957 - val_loss: 0.0489 - val_accuracy: 0.9655 Epoch 1107/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0247 - accuracy: 0.9913 - val_loss: 0.0460 - val_accuracy: 0.9828 Epoch 1108/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0146 - accuracy: 0.9957 - val_loss: 0.0459 - val_accuracy: 0.9828 Epoch 1109/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0122 - accuracy: 0.9957 - val_loss: 0.0473 - val_accuracy: 0.9828 Epoch 1110/3000 2/2 [==============================] - 0s 60ms/step - loss: 0.0167 - accuracy: 0.9957 - val_loss: 0.0489 - val_accuracy: 0.9828 Epoch 1111/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0075 - accuracy: 1.0000 - val_loss: 0.0503 - val_accuracy: 0.9828 Epoch 1112/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0090 - accuracy: 0.9957 - val_loss: 0.0522 - val_accuracy: 0.9828 Epoch 1113/3000 2/2 [==============================] - 0s 58ms/step - loss: 0.0128 - accuracy: 0.9957 - val_loss: 0.0549 - val_accuracy: 0.9828 Epoch 1114/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0176 - accuracy: 0.9913 - val_loss: 0.0582 - val_accuracy: 0.9828 Epoch 1115/3000 2/2 [==============================] - 0s 55ms/step - loss: 0.0213 - accuracy: 0.9913 - val_loss: 0.0593 - val_accuracy: 0.9828 Epoch 1116/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0099 - accuracy: 0.9957 - val_loss: 0.0605 - val_accuracy: 0.9828 Epoch 1117/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0356 - accuracy: 0.9957 - val_loss: 0.0638 - val_accuracy: 0.9655 Epoch 1118/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0163 - accuracy: 0.9957 - val_loss: 0.0659 - val_accuracy: 0.9655 Epoch 1119/3000 2/2 [==============================] - 0s 50ms/step - loss: 0.0123 - accuracy: 0.9957 - val_loss: 0.0659 - val_accuracy: 0.9655 Epoch 1120/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0230 - accuracy: 0.9957 - val_loss: 0.0636 - val_accuracy: 0.9655 Epoch 1121/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0301 - accuracy: 0.9913 - val_loss: 0.0597 - val_accuracy: 0.9655 Epoch 1122/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0274 - accuracy: 0.9913 - val_loss: 0.0559 - val_accuracy: 0.9655 Epoch 1123/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0165 - accuracy: 0.9957 - val_loss: 0.0554 - val_accuracy: 0.9655 Epoch 1124/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0232 - accuracy: 0.9913 - val_loss: 0.0583 - val_accuracy: 0.9655 Epoch 1125/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0122 - accuracy: 0.9957 - val_loss: 0.0587 - val_accuracy: 0.9655 Epoch 1126/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0256 - accuracy: 0.9957 - val_loss: 0.0613 - val_accuracy: 0.9655 Epoch 1127/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0243 - accuracy: 0.9957 - val_loss: 0.0613 - val_accuracy: 0.9655 Epoch 1128/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0086 - accuracy: 1.0000 - val_loss: 0.0603 - val_accuracy: 0.9655 Epoch 1129/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0124 - accuracy: 1.0000 - val_loss: 0.0617 - val_accuracy: 0.9655 Epoch 1130/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0103 - accuracy: 0.9957 - val_loss: 0.0634 - val_accuracy: 0.9655 Epoch 1131/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0659 - val_accuracy: 0.9655 Epoch 1132/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0183 - accuracy: 0.9913 - val_loss: 0.0650 - val_accuracy: 0.9655 Epoch 1133/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0058 - accuracy: 1.0000 - val_loss: 0.0635 - val_accuracy: 0.9655 Epoch 1134/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0157 - accuracy: 0.9957 - val_loss: 0.0631 - val_accuracy: 0.9655 Epoch 1135/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0110 - accuracy: 1.0000 - val_loss: 0.0641 - val_accuracy: 0.9655 Epoch 1136/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0070 - accuracy: 1.0000 - val_loss: 0.0649 - val_accuracy: 0.9655 Epoch 1137/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0060 - accuracy: 1.0000 - val_loss: 0.0653 - val_accuracy: 0.9655 Epoch 1138/3000 2/2 [==============================] - 0s 33ms/step - loss: 0.0081 - accuracy: 0.9957 - val_loss: 0.0665 - val_accuracy: 0.9655 Epoch 1139/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0047 - accuracy: 1.0000 - val_loss: 0.0678 - val_accuracy: 0.9655 Epoch 1140/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0271 - accuracy: 0.9870 - val_loss: 0.0756 - val_accuracy: 0.9655 Epoch 1141/3000 2/2 [==============================] - 0s 56ms/step - loss: 0.0208 - accuracy: 0.9957 - val_loss: 0.0853 - val_accuracy: 0.9655 Epoch 1142/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0121 - accuracy: 1.0000 - val_loss: 0.0939 - val_accuracy: 0.9655 Epoch 1143/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0025 - accuracy: 1.0000 - val_loss: 0.1013 - val_accuracy: 0.9655 Epoch 1144/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0227 - accuracy: 0.9913 - val_loss: 0.1029 - val_accuracy: 0.9655 Epoch 1145/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0074 - accuracy: 1.0000 - val_loss: 0.0994 - val_accuracy: 0.9655 Epoch 1146/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0238 - accuracy: 0.9913 - val_loss: 0.0864 - val_accuracy: 0.9655 Epoch 1147/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0068 - accuracy: 0.9957 - val_loss: 0.0746 - val_accuracy: 0.9655 Epoch 1148/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0148 - accuracy: 0.9913 - val_loss: 0.0621 - val_accuracy: 0.9655 Epoch 1149/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0419 - accuracy: 0.9957 - val_loss: 0.0551 - val_accuracy: 0.9655 Epoch 1150/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0154 - accuracy: 0.9913 - val_loss: 0.0517 - val_accuracy: 0.9655 Epoch 1151/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0270 - accuracy: 0.9913 - val_loss: 0.0518 - val_accuracy: 0.9655 Epoch 1152/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0158 - accuracy: 0.9957 - val_loss: 0.0555 - val_accuracy: 0.9655 Epoch 1153/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0122 - accuracy: 1.0000 - val_loss: 0.0610 - val_accuracy: 0.9655 Epoch 1154/3000 2/2 [==============================] - 0s 44ms/step - loss: 0.0189 - accuracy: 0.9957 - val_loss: 0.0719 - val_accuracy: 0.9655 Epoch 1155/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0149 - accuracy: 0.9957 - val_loss: 0.0785 - val_accuracy: 0.9655 Epoch 1156/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0092 - accuracy: 0.9957 - val_loss: 0.0814 - val_accuracy: 0.9655 Epoch 1157/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0176 - accuracy: 0.9957 - val_loss: 0.0787 - val_accuracy: 0.9655 Epoch 1158/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0068 - accuracy: 1.0000 - val_loss: 0.0747 - val_accuracy: 0.9655 Epoch 1159/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0296 - accuracy: 0.9913 - val_loss: 0.0646 - val_accuracy: 0.9655 Epoch 1160/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 0.0552 - val_accuracy: 0.9655 Epoch 1161/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0123 - accuracy: 0.9957 - val_loss: 0.0522 - val_accuracy: 0.9655 Epoch 1162/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0108 - accuracy: 0.9957 - val_loss: 0.0519 - val_accuracy: 0.9655 Epoch 1163/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0133 - accuracy: 0.9957 - val_loss: 0.0549 - val_accuracy: 0.9655 Epoch 1164/3000 2/2 [==============================] - 0s 41ms/step - loss: 0.0176 - accuracy: 0.9913 - val_loss: 0.0591 - val_accuracy: 0.9655 Epoch 1165/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0482 - accuracy: 0.9957 - val_loss: 0.0678 - val_accuracy: 0.9655 Epoch 1166/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0041 - accuracy: 1.0000 - val_loss: 0.0754 - val_accuracy: 0.9655 Epoch 1167/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0108 - accuracy: 0.9957 - val_loss: 0.0801 - val_accuracy: 0.9655 Epoch 1168/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0108 - accuracy: 1.0000 - val_loss: 0.0844 - val_accuracy: 0.9655 Epoch 1169/3000 2/2 [==============================] - 0s 46ms/step - loss: 0.0099 - accuracy: 0.9957 - val_loss: 0.0885 - val_accuracy: 0.9655 Epoch 1170/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0106 - accuracy: 0.9957 - val_loss: 0.0872 - val_accuracy: 0.9655 Epoch 1171/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0043 - accuracy: 1.0000 - val_loss: 0.0804 - val_accuracy: 0.9655 Epoch 1172/3000 2/2 [==============================] - 0s 43ms/step - loss: 0.0021 - accuracy: 1.0000 - val_loss: 0.0752 - val_accuracy: 0.9655 Epoch 1173/3000 2/2 [==============================] - 0s 48ms/step - loss: 0.0240 - accuracy: 0.9913 - val_loss: 0.0684 - val_accuracy: 0.9655 Epoch 1174/3000 2/2 [==============================] - 0s 32ms/step - loss: 0.0122 - accuracy: 0.9957 - val_loss: 0.0593 - val_accuracy: 0.9655 Epoch 1175/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0024 - accuracy: 1.0000 - val_loss: 0.0524 - val_accuracy: 0.9655 Epoch 1176/3000 2/2 [==============================] - 0s 39ms/step - loss: 0.0131 - accuracy: 0.9913 - val_loss: 0.0482 - val_accuracy: 0.9828 Epoch 1177/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0031 - accuracy: 1.0000 - val_loss: 0.0459 - val_accuracy: 0.9828 Epoch 1178/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0336 - accuracy: 0.9870 - val_loss: 0.0484 - val_accuracy: 0.9828 Epoch 1179/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0242 - accuracy: 0.9913 - val_loss: 0.0558 - val_accuracy: 0.9655 Epoch 1180/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0038 - accuracy: 1.0000 - val_loss: 0.0635 - val_accuracy: 0.9655 Epoch 1181/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0044 - accuracy: 1.0000 - val_loss: 0.0704 - val_accuracy: 0.9655 Epoch 1182/3000 2/2 [==============================] - 0s 36ms/step - loss: 0.0149 - accuracy: 0.9957 - val_loss: 0.0760 - val_accuracy: 0.9655 Epoch 1183/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0094 - accuracy: 0.9957 - val_loss: 0.0834 - val_accuracy: 0.9655 Epoch 1184/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0087 - accuracy: 0.9957 - val_loss: 0.0851 - val_accuracy: 0.9655 Epoch 1185/3000 2/2 [==============================] - 0s 42ms/step - loss: 0.0132 - accuracy: 0.9957 - val_loss: 0.0767 - val_accuracy: 0.9655 Epoch 1186/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0048 - accuracy: 1.0000 - val_loss: 0.0692 - val_accuracy: 0.9655 Epoch 1187/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0201 - accuracy: 0.9957 - val_loss: 0.0585 - val_accuracy: 0.9655 Epoch 1188/3000 2/2 [==============================] - 0s 47ms/step - loss: 0.0166 - accuracy: 0.9870 - val_loss: 0.0492 - val_accuracy: 0.9655 Epoch 1189/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0163 - accuracy: 0.9913 - val_loss: 0.0444 - val_accuracy: 0.9828 Epoch 1190/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0341 - accuracy: 0.9913 - val_loss: 0.0441 - val_accuracy: 0.9828 Epoch 1191/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0127 - accuracy: 0.9957 - val_loss: 0.0500 - val_accuracy: 0.9655 Epoch 1192/3000 2/2 [==============================] - 0s 34ms/step - loss: 0.0024 - accuracy: 1.0000 - val_loss: 0.0562 - val_accuracy: 0.9655 Epoch 1193/3000 2/2 [==============================] - 0s 35ms/step - loss: 0.0101 - accuracy: 0.9957 - val_loss: 0.0605 - val_accuracy: 0.9655 Epoch 1194/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0257 - accuracy: 0.9913 - val_loss: 0.0549 - val_accuracy: 0.9655 Epoch 1195/3000 2/2 [==============================] - 0s 40ms/step - loss: 0.0063 - accuracy: 1.0000 - val_loss: 0.0480 - val_accuracy: 0.9828 Epoch 1196/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0041 - accuracy: 1.0000 - val_loss: 0.0440 - val_accuracy: 0.9828 Epoch 1197/3000 2/2 [==============================] - 0s 37ms/step - loss: 0.0057 - accuracy: 1.0000 - val_loss: 0.0424 - val_accuracy: 0.9828 Epoch 1198/3000 2/2 [==============================] - 0s 38ms/step - loss: 0.0503 - accuracy: 0.9870 - val_lo
In [ ]:
#학습 진행사항을 plt로 출력 # hist4의 accuracy plt의 plot을 이용하여 출력 plt.plot(hist4.history['accuracy'], label='accuracy') plt.plot(hist4.history['loss'], label='loss') plt.plot(hist4.history['val_accuracy'], label='val_accuracy') plt.plot(hist4.history['val_loss'], label='val_loss') plt.ylim(0.0, 1.0) plt.legend(loc='upper left') plt.show()

7.4.모델 평가하기

In [ ]:
# 3번 모델 평가하기 model3.evaluate(test_sound2.reshape(-1,40,65,1), test_labels2, batch_size=32)
2/2 [==============================] - 0s 96ms/step - loss: 0.0756 - accuracy: 0.9828
Out[ ]:
[0.07556033879518509, 0.982758641242981]
In [ ]:
# 4번 모델 평가하기 model4.evaluate(test_sound2.reshape(-1,40,65,1), test_labels2, batch_size=32)
2/2 [==============================] - 0s 62ms/step - loss: 0.1305 - accuracy: 0.9655
Out[ ]:
[0.130483940243721, 0.9655172228813171]
In [ ]:
# 학습된 모델에 넣고 예측하기 yun_result5 = model3.predict(test_yun) yun_result6 = model4.predict(test_yun)
1/1 [==============================] - 0s 15ms/step 1/1 [==============================] - 0s 17ms/step
In [ ]:
print("1번 모델의 결과:", yun_result5) print("2번 모델의 결과:", yun_result6)
1번 모델의 결과: [[1.000000e+00 7.845508e-21]] 2번 모델의 결과: [[0.00762401 0.992376 ]]
In [ ]:
# 시각화 plt.subplot(2,1,1) plt.bar(range(2), yun_result5[0]) plt.subplot(2,1,2) plt.bar(range(2), yun_result6[0]) plt.show() print("날리면이면 0, 바이든이면1") #여기서는 클래스가 2개 # labels_dic = { 0:'nali', 1:'biden' }
날리면이면 0, 바이든이면1
8.결론 1. CNN모델을 어떻게 구성하고, 어떤 데이터로 학습시키는지에 따라 예측결과는 상당히 달라질 수 있음 2. 멜스펙트럼으로 변환 했을때 시각적으로 분석한 결과는..